On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D
Gussetti E (2022)
arXiv.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
We establish existence of an ergodic invariant measure on $H^1(D,\mathbb{R}^3)\cap L^2(D,\mathbb{S}^2)$ for the stochastic Landau-Lifschitz-Gilbert equation on a bounded one dimensional interval $D$. The conclusion is achieved by employing the classical Krylov-Bogoliubov theorem. In contrast to other equations, verifying the hypothesis of the Krylov-Bogoliubov theorem is not a standard procedure. We employ rough paths theory to show that the semigroup associated to the equation has the Feller property in $H^1(D,\mathbb{R}^3)\cap L^2(D,\mathbb{S}^2)$. It does not seem possible to achieve the same conclusion by the classical Stratonovich calculus. On the other hand, we employ the classical Stratonovich calculus to prove the tightness hypothesis. The Krein-Milman theorem implies existence of an ergodic invariant measure. In case of spatially constant noise, we show that there exists a unique Gibbs invariant measure and we establish the qualitative behaviour of the unique stationary solution. In absence of the anisotropic energy and for a spatially constant noise, we are able to provide a path-wise long time behaviour result: in particular, every solution is recurrent for large times.
Erscheinungsjahr
2022
Zeitschriftentitel
arXiv
Page URI
https://pub.uni-bielefeld.de/record/2977910
Zitieren
Gussetti E. On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D. arXiv. 2022.
Gussetti, E. (2022). On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D. arXiv. https://doi.org/10.48550/ARXIV.2208.02136
Gussetti, Emanuela. 2022. “On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D”. arXiv.
Gussetti, E. (2022). On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D. arXiv.
Gussetti, E., 2022. On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D. arXiv.
E. Gussetti, “On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D”, arXiv, 2022.
Gussetti, E.: On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D. arXiv. (2022).
Gussetti, Emanuela. “On ergodic invariant measures for the stochastic Landau-Lifschitz-Gilbert equation in 1D”. arXiv (2022).