The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions

Akemann G, Duits M, Molag L (2023)
Journal of Mathematical Physics 64(2): 023503.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
The elliptic Ginibre ensemble of complex non-Hermitian random matrices allows us to interpolate between the rotationally invariant Ginibre ensemble and the Gaussian unitary ensemble of Hermitian random matrices. It corresponds to a two-dimensional one-component Coulomb gas in a quadrupolar field at inverse temperature beta = 2. Furthermore, it represents a determinantal point process in the complex plane with the corresponding kernel of planar Hermite polynomials. Our main tool is a saddle point analysis of a single contour integral representation of this kernel. We provide a unifying approach to rigorously derive several known and new results of local and global spectral statistics, including in higher dimensions. First, we prove the global statistics in the elliptic Ginibre ensemble first derived by Forrester and Jancovici [Int. J. Mod. Phys. A 11, 941 (1996)]. The limiting kernel receives its main contribution from the boundary of the limiting elliptic droplet of support. In the Hermitian limit, there is a known correspondence between non-interacting fermions in a trap in d real dimensions R-d and the d-dimensional harmonic oscillator. We present a rigorous proof for the local d-dimensional bulk (sine) and edge (Airy) kernel first defined by Dean et al. [Europhys. Lett. 112, 60001 (2015)], complementing the recent results by Deleporte and Lambert [arXiv:2109.02121 (2021)]. Using the same relation to the d-dimensional harmonic oscillator in d complex dimensions C-d, we provide new local bulk and edge statistics at weak and strong non-Hermiticity, where the former interpolates between correlations in d real and d complex dimensions. For C-d with d = 1, this corresponds to non-interacting fermions in a rotating trap.
Erscheinungsjahr
2023
Zeitschriftentitel
Journal of Mathematical Physics
Band
64
Ausgabe
2
Art.-Nr.
023503
ISSN
0022-2488
eISSN
1089-7658
Page URI
https://pub.uni-bielefeld.de/record/2969841

Zitieren

Akemann G, Duits M, Molag L. The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions. Journal of Mathematical Physics. 2023;64(2): 023503.
Akemann, G., Duits, M., & Molag, L. (2023). The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions. Journal of Mathematical Physics, 64(2), 023503. https://doi.org/10.1063/5.0089789
Akemann, Gernot, Duits, M., and Molag, Leslie. 2023. “The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions”. Journal of Mathematical Physics 64 (2): 023503.
Akemann, G., Duits, M., and Molag, L. (2023). The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions. Journal of Mathematical Physics 64:023503.
Akemann, G., Duits, M., & Molag, L., 2023. The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions. Journal of Mathematical Physics, 64(2): 023503.
G. Akemann, M. Duits, and L. Molag, “The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions”, Journal of Mathematical Physics, vol. 64, 2023, : 023503.
Akemann, G., Duits, M., Molag, L.: The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions. Journal of Mathematical Physics. 64, : 023503 (2023).
Akemann, Gernot, Duits, M., and Molag, Leslie. “The elliptic Ginibre ensemble: A unifying approach to local and global statistics for higher dimensions”. Journal of Mathematical Physics 64.2 (2023): 023503.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

arXiv: 2203.00287

Suchen in

Google Scholar