Analyzing the discrepancy principle for kernelized spectral filter learning algorithms

Celisse A, Wahl M (2021)
Journal of Machine Learning Research (JMLR) 22(1): 3498–3556.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Celisse, Alain; Wahl, MartinUniBi
Abstract / Bemerkung
We investigate the construction of early stopping rules in the nonparametric regression problem where iterative learning algorithms are used and the optimal iteration number is unknown. More precisely, we study the discrepancy principle, as well as modifications based on smoothed residuals, for kernelized spectral filter learning algorithms including gradient descent. Our main theoretical bounds are oracle inequalities established for the empirical estimation error (fixed design), and for the prediction error (random design). From these finite-sample bounds it follows that the classical discrepancy principle is statistically adaptive for slow rates occurring in the hard learning scenario, while the smoothed discrepancy principles are adaptive over ranges of faster rates (resp. higher smoothness parameters). Our approach relies on deviation inequalities for the stopping rules in the fixed design setting, combined with change-of-norm arguments to deal with the random design setting.
Erscheinungsjahr
2021
Zeitschriftentitel
Journal of Machine Learning Research (JMLR)
Band
22
Ausgabe
1
Seite(n)
3498–3556
ISSN
1532-4435
Page URI
https://pub.uni-bielefeld.de/record/2969772

Zitieren

Celisse A, Wahl M. Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) . 2021;22(1):3498–3556.
Celisse, A., & Wahl, M. (2021). Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) , 22(1), 3498–3556.
Celisse, Alain, and Wahl, Martin. 2021. “Analyzing the discrepancy principle for kernelized spectral filter learning algorithms”. Journal of Machine Learning Research (JMLR) 22 (1): 3498–3556.
Celisse, A., and Wahl, M. (2021). Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) 22, 3498–3556.
Celisse, A., & Wahl, M., 2021. Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) , 22(1), p 3498–3556.
A. Celisse and M. Wahl, “Analyzing the discrepancy principle for kernelized spectral filter learning algorithms”, Journal of Machine Learning Research (JMLR) , vol. 22, 2021, pp. 3498–3556.
Celisse, A., Wahl, M.: Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) . 22, 3498–3556 (2021).
Celisse, Alain, and Wahl, Martin. “Analyzing the discrepancy principle for kernelized spectral filter learning algorithms”. Journal of Machine Learning Research (JMLR) 22.1 (2021): 3498–3556.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2004.08436

Suchen in

Google Scholar