Analyzing the discrepancy principle for kernelized spectral filter learning algorithms
Celisse A, Wahl M (2021)
Journal of Machine Learning Research (JMLR) 22(1): 3498–3556.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Celisse, Alain;
Wahl, MartinUniBi
Einrichtung
Abstract / Bemerkung
We investigate the construction of early stopping rules in the nonparametric
regression problem where iterative learning algorithms are used and the optimal
iteration number is unknown. More precisely, we study the discrepancy
principle, as well as modifications based on smoothed residuals, for kernelized
spectral filter learning algorithms including gradient descent. Our main
theoretical bounds are oracle inequalities established for the empirical
estimation error (fixed design), and for the prediction error (random design).
From these finite-sample bounds it follows that the classical discrepancy
principle is statistically adaptive for slow rates occurring in the hard
learning scenario, while the smoothed discrepancy principles are adaptive over
ranges of faster rates (resp. higher smoothness parameters). Our approach
relies on deviation inequalities for the stopping rules in the fixed design
setting, combined with change-of-norm arguments to deal with the random design
setting.
Erscheinungsjahr
2021
Zeitschriftentitel
Journal of Machine Learning Research (JMLR)
Band
22
Ausgabe
1
Seite(n)
3498–3556
ISSN
1532-4435
Page URI
https://pub.uni-bielefeld.de/record/2969772
Zitieren
Celisse A, Wahl M. Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) . 2021;22(1):3498–3556.
Celisse, A., & Wahl, M. (2021). Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) , 22(1), 3498–3556.
Celisse, Alain, and Wahl, Martin. 2021. “Analyzing the discrepancy principle for kernelized spectral filter learning algorithms”. Journal of Machine Learning Research (JMLR) 22 (1): 3498–3556.
Celisse, A., and Wahl, M. (2021). Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) 22, 3498–3556.
Celisse, A., & Wahl, M., 2021. Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) , 22(1), p 3498–3556.
A. Celisse and M. Wahl, “Analyzing the discrepancy principle for kernelized spectral filter learning algorithms”, Journal of Machine Learning Research (JMLR) , vol. 22, 2021, pp. 3498–3556.
Celisse, A., Wahl, M.: Analyzing the discrepancy principle for kernelized spectral filter learning algorithms. Journal of Machine Learning Research (JMLR) . 22, 3498–3556 (2021).
Celisse, Alain, and Wahl, Martin. “Analyzing the discrepancy principle for kernelized spectral filter learning algorithms”. Journal of Machine Learning Research (JMLR) 22.1 (2021): 3498–3556.