Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips
Engdahl AK (2023)
Bielefeld: Universität Bielefeld.
Bielefelder E-Dissertation | Englisch
Download
Dissertation-AK-Engdahl.pdf
72.66 MB
Autor*in
Gutachter*in / Betreuer*in
Einrichtung
Abstract / Bemerkung
Super-resolution fluorescence microscopy (optical nanoscopy) allows us to
surpass the optical diffraction limit and observe biological phenomena at
the nanoscale using visible light. Different modalities come with their own
trade-offs, such as imaging speed vs. achieved resolution or live cell
imaging feasibility. In order to achieve axial super-resolution, Total internal
reflection fluorescence (TIRF) is often used. Total internal reflection (TIR) of
light reflected at the boundary to the sample medium creates an evanescent
field in the sample. This sheet-like illumination only reaches a few hundred
nanometers into the sample before decaying, thus achieving axial
super-resolution. Although it is usually created by using oil immersion
lenses, TIR illumination can also be created by coupling light into a
high-index nanometer thin layer, called a waveguide. The resulting
evanescent fields are independent of the detection optics and can be
generated so as to be homogeneous over large scales. Photonic waveguide
chips have previously been manufactured using high-index, inorganic
materials chemically deposited on silicon substrates. These chips are
opaque and costly to produce. This thesis describes the creation of a
cost-effective transparent waveguide chip for inverted microscopes and
explores its uses in fluctuation-based fluorescence nanoscopy. Secondly, the
thesis describes how to exploit the radical transfer between sulfite radicals
and glycerol for switching of fluorophores in localization microscopy. The
generated radical can be used as a switching agent in imaging buffers for
direct Stochastic optical reconstruction microscopy (dSTORM). This novel
switching buffer lowers the complexity of dSTORM experiments by being
simpler to prepare. In addition dSTORM measurements can be performed
earlier after application of the buffer and at lower light intensities, while still
achieving high switching speed and low background signal. This switching
buffer outperforms ordinary dSTORM buffers with its fast dye switching
speeds and high localization densities, being especially useful for samples
embedded in hydrogels and high viscosity media. Lastly, the two
inventions are combined in order to achieve single molecule localization
microscopy on transparent polymer waveguide chips.
Jahr
2023
Seite(n)
163
Urheberrecht / Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2969425
Zitieren
Engdahl AK. Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips. Bielefeld: Universität Bielefeld; 2023.
Engdahl, A. K. (2023). Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2969425
Engdahl, Anders Kokkvoll. 2023. Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips. Bielefeld: Universität Bielefeld.
Engdahl, A. K. (2023). Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips. Bielefeld: Universität Bielefeld.
Engdahl, A.K., 2023. Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips, Bielefeld: Universität Bielefeld.
A.K. Engdahl, Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips, Bielefeld: Universität Bielefeld, 2023.
Engdahl, A.K.: Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips. Universität Bielefeld, Bielefeld (2023).
Engdahl, Anders Kokkvoll. Super-Resolution Fluorescence Microscopy using Transparent Waveguide Chips. Bielefeld: Universität Bielefeld, 2023.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Name
Dissertation-AK-Engdahl.pdf
72.66 MB
Access Level
Open Access
Zuletzt Hochgeladen
2023-03-08T09:46:09Z
MD5 Prüfsumme
a810ff6de4880df7f1de2fc158fd9282