Persistence of autoregressive sequences with logarithmic tails
Denisov D, Hinrichs G, Kolb M, Wachtel V (2022)
Electronic Journal of Probability 27: 154.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Denisov, Denis;
Hinrichs, Guenter;
Kolb, Martin;
Wachtel, VitaliUniBi
Einrichtung
Abstract / Bemerkung
We consider autoregressive sequences X-n = aX(n-1) + xi(n) and M-n = max{aM(n-1), xi(n)} with a constant a is an element of (0, 1) and with positive, independent and identically distributed innovations {xi(k)}. It is known that if P(xi(1) > x) similar to d/log x with some d is an element of (0, - log a) then the chains {X-n} and {M-n} are null recurrent. We investigate the tail behaviour of recurrence times in this case of logarithmically decaying tails. More precisely, we show that the tails of recurrence times are regularly varying of index -1 - d/log a. We also prove limit theorems for {X-n} and {M-n} conditioned to stay over a fixed level x(0). Furthermore, we study tail asymptotics for recurrence times of {X-n} and {M-n} in the case when these chains are positive recurrent and the tail of log xi(1) is subexponential.
Erscheinungsjahr
2022
Zeitschriftentitel
Electronic Journal of Probability
Band
27
Art.-Nr.
154
eISSN
1083-6489
Page URI
https://pub.uni-bielefeld.de/record/2968907
Zitieren
Denisov D, Hinrichs G, Kolb M, Wachtel V. Persistence of autoregressive sequences with logarithmic tails. Electronic Journal of Probability . 2022;27: 154.
Denisov, D., Hinrichs, G., Kolb, M., & Wachtel, V. (2022). Persistence of autoregressive sequences with logarithmic tails. Electronic Journal of Probability , 27, 154. https://doi.org/10.1214/22-EJP879
Denisov, Denis, Hinrichs, Guenter, Kolb, Martin, and Wachtel, Vitali. 2022. “Persistence of autoregressive sequences with logarithmic tails”. Electronic Journal of Probability 27: 154.
Denisov, D., Hinrichs, G., Kolb, M., and Wachtel, V. (2022). Persistence of autoregressive sequences with logarithmic tails. Electronic Journal of Probability 27:154.
Denisov, D., et al., 2022. Persistence of autoregressive sequences with logarithmic tails. Electronic Journal of Probability , 27: 154.
D. Denisov, et al., “Persistence of autoregressive sequences with logarithmic tails”, Electronic Journal of Probability , vol. 27, 2022, : 154.
Denisov, D., Hinrichs, G., Kolb, M., Wachtel, V.: Persistence of autoregressive sequences with logarithmic tails. Electronic Journal of Probability . 27, : 154 (2022).
Denisov, Denis, Hinrichs, Guenter, Kolb, Martin, and Wachtel, Vitali. “Persistence of autoregressive sequences with logarithmic tails”. Electronic Journal of Probability 27 (2022): 154.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in