Minimal residual methods in negative or fractional Sobolev norms
Monsuur H, Stevenson R, Storn J (2023)
Mathematics of Computation.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Monsuur, Harald;
Stevenson, Rob;
Storn, JohannesUniBi
Einrichtung
Abstract / Bemerkung
For numerical approximation the reformulation of a PDE as a residual minimisation problem has the advantages that the resulting linear system is symmetric positive definite, and that the norm of the residual provides an a posteriori error estimator. Furthermore, it allows for the treatment of general inhomogeneous boundary conditions. In many minimal residual formulations, however, one or more terms of the residual are measured in negative or fractional Sobolev norms. In this work, we provide a general approach to replace those norms by efficiently evaluable expressions without sacrificing quasi-optimality of the resulting numerical solution. We exemplify our approach by verifying the necessary inf-sup conditions for four formulations of a model second order elliptic equation with inhomogeneous Dirichlet and/or Neumann boundary conditions. We report on numerical experiments for the Poisson problem with mixed inhomogeneous Dirichlet and Neumann boundary conditions in an ultra-weak first order system formulation.
Erscheinungsjahr
2023
Zeitschriftentitel
Mathematics of Computation
ISSN
0025-5718
eISSN
1088-6842
Page URI
https://pub.uni-bielefeld.de/record/2968888
Zitieren
Monsuur H, Stevenson R, Storn J. Minimal residual methods in negative or fractional Sobolev norms. Mathematics of Computation. 2023.
Monsuur, H., Stevenson, R., & Storn, J. (2023). Minimal residual methods in negative or fractional Sobolev norms. Mathematics of Computation. https://doi.org/10.1090/mcom/3904
Monsuur, Harald, Stevenson, Rob, and Storn, Johannes. 2023. “Minimal residual methods in negative or fractional Sobolev norms”. Mathematics of Computation.
Monsuur, H., Stevenson, R., and Storn, J. (2023). Minimal residual methods in negative or fractional Sobolev norms. Mathematics of Computation.
Monsuur, H., Stevenson, R., & Storn, J., 2023. Minimal residual methods in negative or fractional Sobolev norms. Mathematics of Computation.
H. Monsuur, R. Stevenson, and J. Storn, “Minimal residual methods in negative or fractional Sobolev norms”, Mathematics of Computation, 2023.
Monsuur, H., Stevenson, R., Storn, J.: Minimal residual methods in negative or fractional Sobolev norms. Mathematics of Computation. (2023).
Monsuur, Harald, Stevenson, Rob, and Storn, Johannes. “Minimal residual methods in negative or fractional Sobolev norms”. Mathematics of Computation (2023).
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 2301.10484
Preprint: 10.48550/ARXIV.2301.10484
Suchen in