SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation
Chan RK-W, Lis K, Uhlemeyer S, Blum H, Honari S, Siegwart R, Fua P, Salzmann M, Rottmann M (2021)
In: Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks.
Konferenzbeitrag | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chan, Robin Kien-WeiUniBi ;
Lis, Krzysztof;
Uhlemeyer, Svenja;
Blum, Hermann;
Honari, Sina;
Siegwart, Roland;
Fua, Pascal;
Salzmann, Mathieu;
Rottmann, Matthias
Einrichtung
Abstract / Bemerkung
State-of-the-art semantic or instance segmentation deep neural networks
(DNNs) are usually trained on a closed set of semantic classes. As such, they
are ill-equipped to handle previously-unseen objects. However, detecting and
localizing such objects is crucial for safety-critical applications such as
perception for automated driving, especially if they appear on the road ahead.
While some methods have tackled the tasks of anomalous or out-of-distribution
object segmentation, progress remains slow, in large part due to the lack of
solid benchmarks; existing datasets either consist of synthetic data, or suffer
from label inconsistencies. In this paper, we bridge this gap by introducing
the "SegmentMeIfYouCan" benchmark. Our benchmark addresses two tasks: Anomalous
object segmentation, which considers any previously-unseen object category; and
road obstacle segmentation, which focuses on any object on the road, may it be
known or unknown. We provide two corresponding datasets together with a test
suite performing an in-depth method analysis, considering both established
pixel-wise performance metrics and recent component-wise ones, which are
insensitive to object sizes. We empirically evaluate multiple state-of-the-art
baseline methods, including several models specifically designed for anomaly /
obstacle segmentation, on our datasets and on public ones, using our test
suite. The anomaly and obstacle segmentation results show that our datasets
contribute to the diversity and difficulty of both data landscapes.
Erscheinungsjahr
2021
Titel des Konferenzbandes
Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks
Konferenz
Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS)
Konferenzort
Virtual
Page URI
https://pub.uni-bielefeld.de/record/2968879
Zitieren
Chan RK-W, Lis K, Uhlemeyer S, et al. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In: Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks. 2021.
Chan, R. K. - W., Lis, K., Uhlemeyer, S., Blum, H., Honari, S., Siegwart, R., Fua, P., et al. (2021). SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks
Chan, Robin Kien-Wei, Lis, Krzysztof, Uhlemeyer, Svenja, Blum, Hermann, Honari, Sina, Siegwart, Roland, Fua, Pascal, Salzmann, Mathieu, and Rottmann, Matthias. 2021. “SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation”. In Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks.
Chan, R. K. - W., Lis, K., Uhlemeyer, S., Blum, H., Honari, S., Siegwart, R., Fua, P., Salzmann, M., and Rottmann, M. (2021). “SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation” in Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks.
Chan, R.K.-W., et al., 2021. SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. In Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks.
R.K.-W. Chan, et al., “SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation”, Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks, 2021.
Chan, R.K.-W., Lis, K., Uhlemeyer, S., Blum, H., Honari, S., Siegwart, R., Fua, P., Salzmann, M., Rottmann, M.: SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation. Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks. (2021).
Chan, Robin Kien-Wei, Lis, Krzysztof, Uhlemeyer, Svenja, Blum, Hermann, Honari, Sina, Siegwart, Roland, Fua, Pascal, Salzmann, Mathieu, and Rottmann, Matthias. “SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation”. Proceedings of the Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks. 2021.
Link(s) zu Volltext(en)
Access Level
Open Access
Externes Material:
Bestätigungsschreiben