Detecting and Learning the Unknown in Semantic Segmentation

Chan RK-W, Uhlemeyer S, Rottmann M, Gottschalk H (2022)
In: Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety. Fingscheidt T, Gottschalk H, Houben S (Eds); Cham: Springer International Publishing: 277-313.

Sammelwerksbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Chan, Robin Kien-WeiUniBi ; Uhlemeyer, Svenja; Rottmann, Matthias; Gottschalk, Hanno
Herausgeber*in
Fingscheidt, Tim; Gottschalk, Hanno; Houben, Sebastian
Abstract / Bemerkung
Semantic segmentation is a crucial component for perception in automated driving. Deep neural networks (DNNs) are commonly used for this task, and they are usually trained on a closed set of object classes appearing in a closed operational domain. However, this is in contrast to the open world assumption in automated driving that DNNs are deployed to. Therefore, DNNs necessarily face data that they have never encountered previously, also known asanomalies, which are extremely safety-critical to properly cope with. In this chapter, we first give an overview about anomalies from an information-theoretic perspective. Next, we review research in detecting unknown objects in semantic segmentation. We present a method outperforming recent approaches by training for high entropy responses on anomalous objects, which is in line with our theoretical findings. Finally, we propose a method to assess the occurrence frequency of anomalies in order to select anomaly types to include into a model’s set of semantic categories. We demonstrate that those anomalies can then be learned in an unsupervised fashion which is particularly suitable in online applications.
Erscheinungsjahr
2022
Buchtitel
Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety
Seite(n)
277-313
ISBN
978-3-031-01232-7
eISBN
978-3-031-01233-4
Page URI
https://pub.uni-bielefeld.de/record/2968876

Zitieren

Chan RK-W, Uhlemeyer S, Rottmann M, Gottschalk H. Detecting and Learning the Unknown in Semantic Segmentation. In: Fingscheidt T, Gottschalk H, Houben S, eds. Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety. Cham: Springer International Publishing; 2022: 277-313.
Chan, R. K. - W., Uhlemeyer, S., Rottmann, M., & Gottschalk, H. (2022). Detecting and Learning the Unknown in Semantic Segmentation. In T. Fingscheidt, H. Gottschalk, & S. Houben (Eds.), Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety (pp. 277-313). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-01233-4_10
Chan, Robin Kien-Wei, Uhlemeyer, Svenja, Rottmann, Matthias, and Gottschalk, Hanno. 2022. “Detecting and Learning the Unknown in Semantic Segmentation”. In Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety, ed. Tim Fingscheidt, Hanno Gottschalk, and Sebastian Houben, 277-313. Cham: Springer International Publishing.
Chan, R. K. - W., Uhlemeyer, S., Rottmann, M., and Gottschalk, H. (2022). “Detecting and Learning the Unknown in Semantic Segmentation” in Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety, Fingscheidt, T., Gottschalk, H., and Houben, S. eds. (Cham: Springer International Publishing), 277-313.
Chan, R.K.-W., et al., 2022. Detecting and Learning the Unknown in Semantic Segmentation. In T. Fingscheidt, H. Gottschalk, & S. Houben, eds. Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety. Cham: Springer International Publishing, pp. 277-313.
R.K.-W. Chan, et al., “Detecting and Learning the Unknown in Semantic Segmentation”, Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety, T. Fingscheidt, H. Gottschalk, and S. Houben, eds., Cham: Springer International Publishing, 2022, pp.277-313.
Chan, R.K.-W., Uhlemeyer, S., Rottmann, M., Gottschalk, H.: Detecting and Learning the Unknown in Semantic Segmentation. In: Fingscheidt, T., Gottschalk, H., and Houben, S. (eds.) Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety. p. 277-313. Springer International Publishing, Cham (2022).
Chan, Robin Kien-Wei, Uhlemeyer, Svenja, Rottmann, Matthias, and Gottschalk, Hanno. “Detecting and Learning the Unknown in Semantic Segmentation”. Deep Neural Networks and Data for Automated Driving. Robustness, Uncertainty Quantification, and Insights Towards Safety. Ed. Tim Fingscheidt, Hanno Gottschalk, and Sebastian Houben. Cham: Springer International Publishing, 2022. 277-313.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche