Evolution of the biochemistry of the photorespiratory C2 cycle
Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber APM (2013)
Plant Biology 15(4): 639-647.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hagemann, M.;
Fernie, A. R.;
Espie, G. S.;
Kern, RolandUniBi ;
Eisenhut, MarionUniBi ;
Reumann, S.;
Bauwe, H.;
Weber, A. P. M.
Einrichtung
Abstract / Bemerkung
Oxygenic photosynthesis would not be possible without photorespiration in the present day O2-rich atmosphere. It is now generally accepted that cyanobacteria-like prokaryotes first evolved oxygenic photosynthesis, which was later conveyed via endosymbiosis into a eukaryotic host, which then gave rise to the different groups of algae and streptophytes. For photosynthetic CO2 fixation, all these organisms use RubisCO, which catalyses both the carboxylation and the oxygenation of ribulose 1,5-bisphosphate. One of the reaction products of the oxygenase reaction, 2-phosphoglycolate (2PG), represents the starting point of the photorespiratory C2 cycle, which is considered largely responsible for recapturing organic carbon via conversion to the Calvin–Benson cycle (CBC) intermediate 3-phosphoglycerate, thereby detoxifying critical intermediates. Here we discuss possible scenarios for the evolution of this process toward the well-defined 2PG metabolism in extant plants. While the origin of the C2 cycle core enzymes can be clearly dated back towards the different endosymbiotic events, the evolutionary scenario that allowed the compartmentalised high flux photorespiratory cycle is uncertain, but probably occurred early during the algal radiation. The change in atmospheric CO2/O2 ratios promoting the acquisition of different modes for inorganic carbon concentration mechanisms, as well as the evolutionary specialisation of peroxisomes, clearly had a dramatic impact on further aspects of land plant photorespiration.
Erscheinungsjahr
2013
Zeitschriftentitel
Plant Biology
Band
15
Ausgabe
4
Seite(n)
639-647
ISSN
1435-8603
Page URI
https://pub.uni-bielefeld.de/record/2968462
Zitieren
Hagemann M, Fernie AR, Espie GS, et al. Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biology. 2013;15(4):639-647.
Hagemann, M., Fernie, A. R., Espie, G. S., Kern, R., Eisenhut, M., Reumann, S., Bauwe, H., et al. (2013). Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biology, 15(4), 639-647. https://doi.org/10.1111/j.1438-8677.2012.00677.x
Hagemann, M., Fernie, A. R., Espie, G. S., Kern, Roland, Eisenhut, Marion, Reumann, S., Bauwe, H., and Weber, A. P. M. 2013. “Evolution of the biochemistry of the photorespiratory C2 cycle”. Plant Biology 15 (4): 639-647.
Hagemann, M., Fernie, A. R., Espie, G. S., Kern, R., Eisenhut, M., Reumann, S., Bauwe, H., and Weber, A. P. M. (2013). Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biology 15, 639-647.
Hagemann, M., et al., 2013. Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biology, 15(4), p 639-647.
M. Hagemann, et al., “Evolution of the biochemistry of the photorespiratory C2 cycle”, Plant Biology, vol. 15, 2013, pp. 639-647.
Hagemann, M., Fernie, A.R., Espie, G.S., Kern, R., Eisenhut, M., Reumann, S., Bauwe, H., Weber, A.P.M.: Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biology. 15, 639-647 (2013).
Hagemann, M., Fernie, A. R., Espie, G. S., Kern, Roland, Eisenhut, Marion, Reumann, S., Bauwe, H., and Weber, A. P. M. “Evolution of the biochemistry of the photorespiratory C2 cycle”. Plant Biology 15.4 (2013): 639-647.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 23198988
PubMed | Europe PMC
Suchen in