A Survey on Knee-Oriented Multiobjective Evolutionary Optimization
Yu G, Ma L, Jin Y, Du W, Liu Q, Zhang H (2022)
IEEE Transactions on Evolutionary Computation 26(6): 1452-1472.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Yu, Guo;
Ma, Lianbo;
Jin, YaochuUniBi ;
Du, Wenli;
Liu, Qiqi;
Zhang, Hengmin
Abstract / Bemerkung
Conventional multiobjective optimization algorithms (MOEAs) with or without preferences are successful in solving multi- and many-objective optimization problems. However, a strong hypothesis underlying their performance is that MOEAs are able to find a representative solution set to cover the entire Pareto-optimal front (PF) and decision makers are able to conveniently and precisely articulate their preference, which is not always easy to fulfill in practice. Accordingly, it is suggested that representative solutions in the naturally interesting regions of the PF rather than the whole PF should be targeted. A large body of research has been proposed to search or identify the knees or knee regions over the past decades. Therefore, this article aims to provide a comprehensive survey of the research on knee-oriented optimization. We start with a discussion of the importance and basic concepts of the knees, followed by a summary of knee-oriented benchmarks and indicators. After that, knee-oriented frameworks and techniques, and real-world applications are presented. Finally, potential challenges are pointed out and a few promising future lines of research are suggested. The survey offers a new perspective to develop MOEAs for solving multi- and many-objective optimization problems.
Stichworte
Knee;
multiobjective optimization;
preference
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE Transactions on Evolutionary Computation
Band
26
Ausgabe
6
Seite(n)
1452-1472
ISSN
1089-778X
eISSN
1941-0026
Page URI
https://pub.uni-bielefeld.de/record/2967873
Zitieren
Yu G, Ma L, Jin Y, Du W, Liu Q, Zhang H. A Survey on Knee-Oriented Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation. 2022;26(6):1452-1472.
Yu, G., Ma, L., Jin, Y., Du, W., Liu, Q., & Zhang, H. (2022). A Survey on Knee-Oriented Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation, 26(6), 1452-1472. https://doi.org/10.1109/TEVC.2022.3144880
Yu, Guo, Ma, Lianbo, Jin, Yaochu, Du, Wenli, Liu, Qiqi, and Zhang, Hengmin. 2022. “A Survey on Knee-Oriented Multiobjective Evolutionary Optimization”. IEEE Transactions on Evolutionary Computation 26 (6): 1452-1472.
Yu, G., Ma, L., Jin, Y., Du, W., Liu, Q., and Zhang, H. (2022). A Survey on Knee-Oriented Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 26, 1452-1472.
Yu, G., et al., 2022. A Survey on Knee-Oriented Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation, 26(6), p 1452-1472.
G. Yu, et al., “A Survey on Knee-Oriented Multiobjective Evolutionary Optimization”, IEEE Transactions on Evolutionary Computation, vol. 26, 2022, pp. 1452-1472.
Yu, G., Ma, L., Jin, Y., Du, W., Liu, Q., Zhang, H.: A Survey on Knee-Oriented Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation. 26, 1452-1472 (2022).
Yu, Guo, Ma, Lianbo, Jin, Yaochu, Du, Wenli, Liu, Qiqi, and Zhang, Hengmin. “A Survey on Knee-Oriented Multiobjective Evolutionary Optimization”. IEEE Transactions on Evolutionary Computation 26.6 (2022): 1452-1472.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in