Following manifolds in equivariant evolution equations
Röndigs J (2022)
Bielefeld: Universität Bielefeld.
Bielefelder E-Dissertation | Englisch
Download
Autor*in
Gutachter*in / Betreuer*in
Einrichtung
Abstract / Bemerkung
This thesis provides a first step into the utilisation of infinitedimensional
symmetry in the freezing method. We cover the theoretical foundation
and introduce the freezing system based on equivariance with respect to
the diffeomorphism group. Furthermore, phase conditions are created that explicitly use the infinite-dimensional setting. These results are then implemented
in numerical algorithms, and the thesis concludes with experiments that demonstrate how powerful the extension to infinite-dimensional Lie groups can be.
Jahr
2022
Seite(n)
142
Urheberrecht / Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2967771
Zitieren
Röndigs J. Following manifolds in equivariant evolution equations. Bielefeld: Universität Bielefeld; 2022.
Röndigs, J. (2022). Following manifolds in equivariant evolution equations. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2967771
Röndigs, Jochen. 2022. Following manifolds in equivariant evolution equations. Bielefeld: Universität Bielefeld.
Röndigs, J. (2022). Following manifolds in equivariant evolution equations. Bielefeld: Universität Bielefeld.
Röndigs, J., 2022. Following manifolds in equivariant evolution equations, Bielefeld: Universität Bielefeld.
J. Röndigs, Following manifolds in equivariant evolution equations, Bielefeld: Universität Bielefeld, 2022.
Röndigs, J.: Following manifolds in equivariant evolution equations. Universität Bielefeld, Bielefeld (2022).
Röndigs, Jochen. Following manifolds in equivariant evolution equations. Bielefeld: Universität Bielefeld, 2022.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Public Domain Dedication (CC0 1.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2022-12-21T12:46:47Z
MD5 Prüfsumme
7858b0f1f01b8b4106c7082fc618ac96