TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors

Jonas R, Prato V, Lechner SG, Groen G, Obreja O, Werland F, Rukwied R, Klusch A, Petersen M, Carr RW, Schmelz M (2020)
Frontiers in Cellular Neuroscience 14: 13.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Jonas, RobinUniBi ; Prato, Vincenzo; Lechner, Stefan G.; Groen, Gerbrand; Obreja, Otilia; Werland, Fiona; Rukwied, Roman; Klusch, Andreas; Petersen, Marlen; Carr, Richard W.; Schmelz, Martin
Abstract / Bemerkung
Pronounced activity-dependent slowing of conduction has been used to characterize mechano-insensitive, “silent” nociceptors and might be due to high expression of NaV1.8 and could, therefore, be characterized by their tetrodotoxin-resistance (TTX-r). Nociceptor-class specific differences in action potential characteristics were studied by: (i) in vitro calcium imaging in single porcine nerve growth factor (NGF)-responsive neurites; (ii) in vivo extracellular recordings in functionally identified porcine silent nociceptors; and (iii) in vitro patch-clamp recordings from murine silent nociceptors, genetically defined by nicotinic acetylcholine receptor subunit alpha-3 (CHRNA3) expression. Porcine TTX-r neurites (n = 26) in vitro had more than twice as high calcium transients per action potential as compared to TTX-s neurites (n = 18). In pig skin, silent nociceptors (n = 14) characterized by pronounced activity-dependent slowing of conduction were found to be TTX-r, whereas polymodal nociceptors were TTX-s (n = 12) and had only moderate slowing. Mechano-insensitive cold nociceptors were also TTX-r but showed less activity-dependent slowing than polymodal nociceptors. Action potentials in murine silent nociceptors differed from putative polymodal nociceptors by longer duration and higher peak amplitudes. Longer duration AP in silent murine nociceptors linked to increased sodium load would be compatible with a pronounced activity-dependent slowing in pig silent nociceptors and longer AP durations could be in line with increased calcium transients per action potential observed in vitro in TTX-resistant NGF responsive porcine neurites. Even though there is no direct link between slowing and TTX-resistant channels, the results indicate that axons of silent nociceptors not only differ in their receptive but also in their axonal properties.
Erscheinungsjahr
2020
Zeitschriftentitel
Frontiers in Cellular Neuroscience
Band
14
Art.-Nr.
13
eISSN
1662-5102
Page URI
https://pub.uni-bielefeld.de/record/2967445

Zitieren

Jonas R, Prato V, Lechner SG, et al. TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors. Frontiers in Cellular Neuroscience. 2020;14: 13.
Jonas, R., Prato, V., Lechner, S. G., Groen, G., Obreja, O., Werland, F., Rukwied, R., et al. (2020). TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors. Frontiers in Cellular Neuroscience, 14, 13. https://doi.org/10.3389/fncel.2020.00013
Jonas, Robin, Prato, Vincenzo, Lechner, Stefan G., Groen, Gerbrand, Obreja, Otilia, Werland, Fiona, Rukwied, Roman, et al. 2020. “TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors”. Frontiers in Cellular Neuroscience 14: 13.
Jonas, R., Prato, V., Lechner, S. G., Groen, G., Obreja, O., Werland, F., Rukwied, R., Klusch, A., Petersen, M., Carr, R. W., et al. (2020). TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors. Frontiers in Cellular Neuroscience 14:13.
Jonas, R., et al., 2020. TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors. Frontiers in Cellular Neuroscience, 14: 13.
R. Jonas, et al., “TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors”, Frontiers in Cellular Neuroscience, vol. 14, 2020, : 13.
Jonas, R., Prato, V., Lechner, S.G., Groen, G., Obreja, O., Werland, F., Rukwied, R., Klusch, A., Petersen, M., Carr, R.W., Schmelz, M.: TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors. Frontiers in Cellular Neuroscience. 14, : 13 (2020).
Jonas, Robin, Prato, Vincenzo, Lechner, Stefan G., Groen, Gerbrand, Obreja, Otilia, Werland, Fiona, Rukwied, Roman, Klusch, Andreas, Petersen, Marlen, Carr, Richard W., and Schmelz, Martin. “TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors”. Frontiers in Cellular Neuroscience 14 (2020): 13.

Link(s) zu Volltext(en)
Access Level
OA Open Access

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 32116559
PubMed | Europe PMC

Suchen in

Google Scholar