plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph
Sielemann J, Sielemann K, Brejová B, Vinař T, Chauve C (2023)
Frontiers in Microbiology 14: 1267695.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Identification of plasmids from sequencing data is an important and challenging problem related to antimicrobial resistance spread and other One-Health issues. We provide a new architecture for identifying plasmid contigs in fragmented genome assemblies built from short-read data. We employ graph neural networks (GNNs) and the assembly graph to propagate the information from nearby nodes, which leads to more accurate classification, especially for short contigs that are difficult to classify based on sequence features or database searches alone. We trained plASgraph2 on a data set of samples from the ESKAPEE group of pathogens. plASgraph2 either outperforms or performs on par with a wide range of state-of-the-art methods on testing sets of independent ESKAPEE samples and samples from related pathogens. On one hand, our study provides a new accurate and easy to use tool for contig classification in bacterial isolates; on the other hand, it serves as a proof-of-concept for the use of GNNs in genomics. Our software is available at https://github.com/cchauve/plasgraph2 and the training and testing data sets are available at https://github.com/fmfi-compbio/plasgraph2-datasets.
Erscheinungsjahr
2023
Zeitschriftentitel
Frontiers in Microbiology
Band
14
Art.-Nr.
1267695
eISSN
1664-302X
Page URI
https://pub.uni-bielefeld.de/record/2967319
Zitieren
Sielemann J, Sielemann K, Brejová B, Vinař T, Chauve C. plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Frontiers in Microbiology . 2023;14: 1267695.
Sielemann, J., Sielemann, K., Brejová, B., Vinař, T., & Chauve, C. (2023). plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Frontiers in Microbiology , 14, 1267695. https://doi.org/10.3389/fmicb.2023.1267695
Sielemann, Janik, Sielemann, Katharina, Brejová, Broňa, Vinař, Tomáš, and Chauve, Cedric. 2023. “plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph”. Frontiers in Microbiology 14: 1267695.
Sielemann, J., Sielemann, K., Brejová, B., Vinař, T., and Chauve, C. (2023). plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Frontiers in Microbiology 14:1267695.
Sielemann, J., et al., 2023. plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Frontiers in Microbiology , 14: 1267695.
J. Sielemann, et al., “plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph”, Frontiers in Microbiology , vol. 14, 2023, : 1267695.
Sielemann, J., Sielemann, K., Brejová, B., Vinař, T., Chauve, C.: plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph. Frontiers in Microbiology . 14, : 1267695 (2023).
Sielemann, Janik, Sielemann, Katharina, Brejová, Broňa, Vinař, Tomáš, and Chauve, Cedric. “plASgraph2: using graph neural networks to detect plasmid contigs from an assembly graph”. Frontiers in Microbiology 14 (2023): 1267695.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 37869681
PubMed | Europe PMC
Preprint: 10.1101/2022.05.24.493339
Suchen in