Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity

Alaçam Ö, Ruppert E, Malhotra G, Biemann C, Zarrieß S (2022)
In: Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022. He Y, Yi H, Li S, Liu Y, Chang C-H (Eds); Stroudsburg, PA: Association for Computational Linguistics: 197-210.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Alaçam, ÖzgeUniBi; Ruppert, Eugen; Malhotra, Ganeshan; Biemann, Chris; Zarrieß, SinaUniBi
Herausgeber*in
He, Yulan; Yi, Heng; Li, Sujian; Liu, Yang; Chang, Chua-Hui
Abstract / Bemerkung
Referential gaze is a fundamental phenomenon for psycholinguistics and human-human communication. However, modeling referential gaze for real-world scenarios, e.g. for task-oriented communication, is lacking the well-deserved attention from the NLP community. In this paper, we address this challenging issue by proposing a novel multimodal NLP task; namely predicting when the gaze is referential. We further investigate how to model referential gaze and transfer gaze features to adapt to unseen situated settings that target different referential complexities than the training environment. We train (i) a sequential attention-based LSTM model and (ii) a multivariate transformer encoder architecture to predict whether the gaze is on a referent object. The models are evaluated on the three complexity datasets. The results indicate that the gaze features can be transferred not only among various similar tasks and scenes but also across various complexity levels. Taking the referential complexity of a scene into account is important for successful target prediction using gaze parameters especially when there is not much data for fine-tuning.
Erscheinungsjahr
2022
Titel des Konferenzbandes
Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022
Seite(n)
197-210
Konferenz
The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing
Konferenzort
Online only
Konferenzdatum
2022-11-20 – 2022-11-23
ISBN
978-1-959429-04-3
Page URI
https://pub.uni-bielefeld.de/record/2967315

Zitieren

Alaçam Ö, Ruppert E, Malhotra G, Biemann C, Zarrieß S. Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity. In: He Y, Yi H, Li S, Liu Y, Chang C-H, eds. Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022. Stroudsburg, PA: Association for Computational Linguistics; 2022: 197-210.
Alaçam, Ö., Ruppert, E., Malhotra, G., Biemann, C., & Zarrieß, S. (2022). Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity. In Y. He, H. Yi, S. Li, Y. Liu, & C. - H. Chang (Eds.), Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022 (pp. 197-210). Stroudsburg, PA: Association for Computational Linguistics.
Alaçam, Özge, Ruppert, Eugen, Malhotra, Ganeshan, Biemann, Chris, and Zarrieß, Sina. 2022. “Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity”. In Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, ed. Yulan He, Heng Yi, Sujian Li, Yang Liu, and Chua-Hui Chang, 197-210. Stroudsburg, PA: Association for Computational Linguistics.
Alaçam, Ö., Ruppert, E., Malhotra, G., Biemann, C., and Zarrieß, S. (2022). “Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity” in Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, He, Y., Yi, H., Li, S., Liu, Y., and Chang, C. - H. eds. (Stroudsburg, PA: Association for Computational Linguistics), 197-210.
Alaçam, Ö., et al., 2022. Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity. In Y. He, et al., eds. Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022. Stroudsburg, PA: Association for Computational Linguistics, pp. 197-210.
Ö. Alaçam, et al., “Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity”, Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022, Y. He, et al., eds., Stroudsburg, PA: Association for Computational Linguistics, 2022, pp.197-210.
Alaçam, Ö., Ruppert, E., Malhotra, G., Biemann, C., Zarrieß, S.: Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity. In: He, Y., Yi, H., Li, S., Liu, Y., and Chang, C.-H. (eds.) Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022. p. 197-210. Association for Computational Linguistics, Stroudsburg, PA (2022).
Alaçam, Özge, Ruppert, Eugen, Malhotra, Ganeshan, Biemann, Chris, and Zarrieß, Sina. “Modeling Referential Gaze in Task-oriented Settings of Varying Referential Complexity”. Findings of the Association for Computational Linguistics: AACL-IJCNLP 2022. Ed. Yulan He, Heng Yi, Sujian Li, Yang Liu, and Chua-Hui Chang. Stroudsburg, PA: Association for Computational Linguistics, 2022. 197-210.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche