DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows
Zhang R, Hu P, Meng Q, Wang Y, Zhu R, Chen B, Ma Z-M, Liu T-Y (2022)
Physics of Fluids 34(10): 107112.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Zhang, Rui;
Hu, Peiyan;
Meng, Qi;
Wang, Yue;
Zhu, RongchanUniBi;
Chen, Bingguang;
Ma, Zhi-Ming;
Liu, Tie-Yan
Einrichtung
Abstract / Bemerkung
We present the deep random vortex network (DRVN), a novel physics-informed framework for simulating and inferring the fluid dynamics governed by the incompressible Navier-Stokes equations. Unlike the existing physics-informed neural network (PINN), which embeds physical and geometry information through the residual of equations and boundary data, DRVN automatically embeds this information into neural networks through neural random vortex dynamics equivalent to the Navier-Stokes equation. Specifically, the neural random vortex dynamics motivates a Monte Carlo-based loss function for training neural networks, which avoids the calculation of derivatives through auto-differentiation. Therefore, DRVN can efficiently solve Navier-Stokes equations with non-differentiable initial conditions and fractional operators. Furthermore, DRVN naturally embeds the boundary conditions into the kernel function of the neural random vortex dynamics and, thus, does not need additional data to obtain boundary information. We conduct experiments on forward and inverse problems with incompressible Navier-Stokes equations. The proposed method achieves accurate results when simulating and when inferring Navier-Stokes equations. For situations that include singular initial conditions and agnostic boundary data, DRVN significantly outperforms the existing PINN method. Furthermore, compared with the conventional adjoint method when solving inverse problems, DRVN achieves a 2 orders of magnitude improvement for the training time with significantly precise estimates. Published under an exclusive license by AIP Publishing.
Erscheinungsjahr
2022
Zeitschriftentitel
Physics of Fluids
Band
34
Ausgabe
10
Art.-Nr.
107112
ISSN
1070-6631
eISSN
1089-7666
Page URI
https://pub.uni-bielefeld.de/record/2966978
Zitieren
Zhang R, Hu P, Meng Q, et al. DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows. Physics of Fluids . 2022;34(10): 107112.
Zhang, R., Hu, P., Meng, Q., Wang, Y., Zhu, R., Chen, B., Ma, Z. - M., et al. (2022). DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows. Physics of Fluids , 34(10), 107112. https://doi.org/10.1063/5.0110342
Zhang, Rui, Hu, Peiyan, Meng, Qi, Wang, Yue, Zhu, Rongchan, Chen, Bingguang, Ma, Zhi-Ming, and Liu, Tie-Yan. 2022. “DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows”. Physics of Fluids 34 (10): 107112.
Zhang, R., Hu, P., Meng, Q., Wang, Y., Zhu, R., Chen, B., Ma, Z. - M., and Liu, T. - Y. (2022). DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows. Physics of Fluids 34:107112.
Zhang, R., et al., 2022. DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows. Physics of Fluids , 34(10): 107112.
R. Zhang, et al., “DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows”, Physics of Fluids , vol. 34, 2022, : 107112.
Zhang, R., Hu, P., Meng, Q., Wang, Y., Zhu, R., Chen, B., Ma, Z.-M., Liu, T.-Y.: DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows. Physics of Fluids . 34, : 107112 (2022).
Zhang, Rui, Hu, Peiyan, Meng, Qi, Wang, Yue, Zhu, Rongchan, Chen, Bingguang, Ma, Zhi-Ming, and Liu, Tie-Yan. “DRVN (deep random vortex network): A new physics-informed machine learning method for simulating and inferring incompressible fluid flows”. Physics of Fluids 34.10 (2022): 107112.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in