Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction

Blum M, Ell B, Cimiano P (2022)
In: IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs. Artale A, Calvanese D, Wang H, Zhang X (Eds); ACM Other Conferences. New York, NY: ACM: 48-54.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Herausgeber*in
Artale, Alessandro; Calvanese, Diego; Wang, Haofen; Zhang, Xiaowang
Abstract / Bemerkung
Knowledge Graphs are relevant for many applications, but are inherently incomplete. Thus, Link Prediction methods have been proposed to infer new triples in order to complete a given Knowledge Graph. Many Link Prediction methods ignore literals, in spite of the fact that literals can express important information about entities not encoded in relations between entities. The existing methods that do incorporate literal information e. g., LiteralE introduce complex architectures by modifying the model or the loss-function. In our research paper, we propose a new approach that relies on graph transformations to transform a graph in such a way that existing Link Prediction methods can leverage the literal information. In particular, we define three transformations and evaluate them in comparison to state-of-the-art approaches. In most cases, the additional triples generated by our transformations lead to a performance increase and even state-of-the-art performance can be reached when comparing against LiteralE. It turned out that even a reductionistic transformation is able to archive comparable results like current, more complex, state-of-the-art approaches which incorporate literals.
Erscheinungsjahr
2022
Titel des Konferenzbandes
IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs
Serien- oder Zeitschriftentitel
ACM Other Conferences
Seite(n)
48-54
Konferenz
IJCKG
Konferenzort
online
Konferenzdatum
2022-10-27 – 2022-10-28
eISBN
978-1-4503-9987-6
Page URI
https://pub.uni-bielefeld.de/record/2966506

Zitieren

Blum M, Ell B, Cimiano P. Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction. In: Artale A, Calvanese D, Wang H, Zhang X, eds. IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs. ACM Other Conferences. New York, NY: ACM; 2022: 48-54.
Blum, M., Ell, B., & Cimiano, P. (2022). Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction. In A. Artale, D. Calvanese, H. Wang, & X. Zhang (Eds.), ACM Other Conferences. IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs (pp. 48-54). New York, NY: ACM. https://doi.org/10.1145/3579051.3579069
Blum, Moritz, Ell, Basil, and Cimiano, Philipp. 2022. “Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction”. In IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs, ed. Alessandro Artale, Diego Calvanese, Haofen Wang, and Xiaowang Zhang, 48-54. ACM Other Conferences. New York, NY: ACM.
Blum, M., Ell, B., and Cimiano, P. (2022). “Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction” in IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs, Artale, A., Calvanese, D., Wang, H., and Zhang, X. eds. ACM Other Conferences (New York, NY: ACM), 48-54.
Blum, M., Ell, B., & Cimiano, P., 2022. Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction. In A. Artale, et al., eds. IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs. ACM Other Conferences. New York, NY: ACM, pp. 48-54.
M. Blum, B. Ell, and P. Cimiano, “Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction”, IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs, A. Artale, et al., eds., ACM Other Conferences, New York, NY: ACM, 2022, pp.48-54.
Blum, M., Ell, B., Cimiano, P.: Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction. In: Artale, A., Calvanese, D., Wang, H., and Zhang, X. (eds.) IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs. ACM Other Conferences. p. 48-54. ACM, New York, NY (2022).
Blum, Moritz, Ell, Basil, and Cimiano, Philipp. “Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction”. IJCKG '22: Proceedings of the 11th International Joint Conference on Knowledge Graphs. Ed. Alessandro Artale, Diego Calvanese, Haofen Wang, and Xiaowang Zhang. New York, NY: ACM, 2022. ACM Other Conferences. 48-54.

Link(s) zu Volltext(en)
Access Level
OA Open Access

Externes Material:
In sonstiger Relation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar