Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization

Tian Y, Chen H, Ma H, Zhang X, Tan KC, Jin Y (2022)
IEEE/CAA Journal of Automatica Sinica 9(10): 1801-1817.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Tian, Ye; Chen, Haowen; Ma, Haiping; Zhang, Xingyi; Tan, Kay Chen; Jin, YaochuUniBi
Abstract / Bemerkung
Large-scale multi-objective optimization problems (LSMOPs) pose challenges to existing optimizers since a set of well-converged and diverse solutions should be found in huge search spaces. While evolutionary algorithms are good at solving small-scale multi-objective optimization problems, they are criticized for low efficiency in converging to the optimums of LSMOPs. By contrast, mathematical programming methods offer fast convergence speed on large-scale single-objective optimization problems, but they have difficulties in finding diverse solutions for LSMOPs. Currently, how to integrate evolutionary algorithms with mathematical programming methods to solve LSMOPs remains unexplored. In this paper, a hybrid algorithm is tailored for LSMOPs by coupling differential evolution and a conjugate gradient method. On the one hand, conjugate gradients and differential evolution are used to update different decision variables of a set of solutions, where the former drives the solutions to quickly converge towards the Pareto front and the latter promotes the diversity of the solutions to cover the whole Pareto front. On the other hand, objective decomposition strategy of evolutionary multi-objective optimization is used to differentiate the conjugate gradients of solutions, and the line search strategy of mathematical programming is used to ensure the higher quality of each offspring than its parent. In comparison with state-of-the-art evolutionary algorithms, mathematical programming methods, and hybrid algorithms, the proposed algorithm exhibits better convergence and diversity performance on a variety of benchmark and real-world LSMOPs.
Stichworte
Conjugate gradient; differential evolution; evolutionary computation; large-scale multi-objective optimization; mathematical programming
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE/CAA Journal of Automatica Sinica
Band
9
Ausgabe
10
Seite(n)
1801-1817
ISSN
2329-9266
eISSN
2329-9274
Page URI
https://pub.uni-bielefeld.de/record/2966363

Zitieren

Tian Y, Chen H, Ma H, Zhang X, Tan KC, Jin Y. Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization. IEEE/CAA Journal of Automatica Sinica . 2022;9(10):1801-1817.
Tian, Y., Chen, H., Ma, H., Zhang, X., Tan, K. C., & Jin, Y. (2022). Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization. IEEE/CAA Journal of Automatica Sinica , 9(10), 1801-1817. https://doi.org/10.1109/JAS.2022.105875
Tian, Ye, Chen, Haowen, Ma, Haiping, Zhang, Xingyi, Tan, Kay Chen, and Jin, Yaochu. 2022. “Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization”. IEEE/CAA Journal of Automatica Sinica 9 (10): 1801-1817.
Tian, Y., Chen, H., Ma, H., Zhang, X., Tan, K. C., and Jin, Y. (2022). Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization. IEEE/CAA Journal of Automatica Sinica 9, 1801-1817.
Tian, Y., et al., 2022. Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization. IEEE/CAA Journal of Automatica Sinica , 9(10), p 1801-1817.
Y. Tian, et al., “Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization”, IEEE/CAA Journal of Automatica Sinica , vol. 9, 2022, pp. 1801-1817.
Tian, Y., Chen, H., Ma, H., Zhang, X., Tan, K.C., Jin, Y.: Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization. IEEE/CAA Journal of Automatica Sinica . 9, 1801-1817 (2022).
Tian, Ye, Chen, Haowen, Ma, Haiping, Zhang, Xingyi, Tan, Kay Chen, and Jin, Yaochu. “Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization”. IEEE/CAA Journal of Automatica Sinica 9.10 (2022): 1801-1817.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar