A model of voting dynamics under bounded confidence with nonstandard norming
Pilyugin S yu., Tarasova M, Tarasov A, V. Monakov G (2022)
Networks and Heterogeneous Media: An Applied Mathematics Journal 17(6): 917-931.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Pilyugin, Sergei yu.;
Tarasova, Maria;
Tarasov, AleksandrUniBi;
V. Monakov, Grigorii
Einrichtung
Abstract / Bemerkung
In this paper, we study a model of opinion dynamics based on the so-called "bounded confidence" principle introduced by Hegselmann and Krause. Following this principle, voters participating in an electoral decision with two options are influenced by individuals sharing an opinion similar to their own.We consider a modification of this model where the operator generating the dynamical system which describes the process of formation the final distribu-tion of opinions in the society is defined in two steps. First, to the opinion of an agent, a value proportional to opinions in his/her "influence group" is added, and then the elements of the resulting array are divided by the maximal absolute value of elements to keep the opinions in the prescribed interval. We show that under appropriate conditions, any trajectory tends to a fixed point, and all the remaining fixed points are Lyapunov stable.
Stichworte
Opinion dynamics;
voting processes;
bounded confidence;
dynamical;
systems;
fixed points
Erscheinungsjahr
2022
Zeitschriftentitel
Networks and Heterogeneous Media: An Applied Mathematics Journal
Band
17
Ausgabe
6
Seite(n)
917-931
ISSN
1556-1801
eISSN
1556-181X
Page URI
https://pub.uni-bielefeld.de/record/2966343
Zitieren
Pilyugin S yu., Tarasova M, Tarasov A, V. Monakov G. A model of voting dynamics under bounded confidence with nonstandard norming. Networks and Heterogeneous Media: An Applied Mathematics Journal. 2022;17(6):917-931.
Pilyugin, S. yu., Tarasova, M., Tarasov, A., & V. Monakov, G. (2022). A model of voting dynamics under bounded confidence with nonstandard norming. Networks and Heterogeneous Media: An Applied Mathematics Journal, 17(6), 917-931. https://doi.org/10.3934/nhm.2022032
Pilyugin, Sergei yu., Tarasova, Maria, Tarasov, Aleksandr, and V. Monakov, Grigorii. 2022. “A model of voting dynamics under bounded confidence with nonstandard norming”. Networks and Heterogeneous Media: An Applied Mathematics Journal 17 (6): 917-931.
Pilyugin, S. yu., Tarasova, M., Tarasov, A., and V. Monakov, G. (2022). A model of voting dynamics under bounded confidence with nonstandard norming. Networks and Heterogeneous Media: An Applied Mathematics Journal 17, 917-931.
Pilyugin, S. yu., et al., 2022. A model of voting dynamics under bounded confidence with nonstandard norming. Networks and Heterogeneous Media: An Applied Mathematics Journal, 17(6), p 917-931.
S. yu. Pilyugin, et al., “A model of voting dynamics under bounded confidence with nonstandard norming”, Networks and Heterogeneous Media: An Applied Mathematics Journal, vol. 17, 2022, pp. 917-931.
Pilyugin, S. yu., Tarasova, M., Tarasov, A., V. Monakov, G.: A model of voting dynamics under bounded confidence with nonstandard norming. Networks and Heterogeneous Media: An Applied Mathematics Journal. 17, 917-931 (2022).
Pilyugin, Sergei yu., Tarasova, Maria, Tarasov, Aleksandr, and V. Monakov, Grigorii. “A model of voting dynamics under bounded confidence with nonstandard norming”. Networks and Heterogeneous Media: An Applied Mathematics Journal 17.6 (2022): 917-931.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in