Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature

Deckers F, Rasim K, Schröder C (2022)
Journal of Polymer Research 29(11): 463.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.70 MB
Autor*in
Deckers, Fabian; Rasim, Karsten; Schröder, ChristianUniBi
Abstract / Bemerkung
Molecular dynamics (MD) simulations in the canonical (NVT) and the isothermal-isobaric (NPT) ensemble using COMPASS III molecular force fields were performed to study the penetrant diffusion of water (H2O), hydrogen peroxide (H2O2) and oxygen (O2) in isotactic polypropylene (iPP) and hydrogen (H2) in iPP and atactic polypropylene (aPP) for time intervals up to 11 ns and in the case of H2O2up to 22 ns. We found robust cluster formation in the case of H2O and H2O2. Further, the diffusion coefficients for all these systems were estimated by mean-square displacement analysis. Our results are consistent with previously published experimental and computational data except for the diffusion of H2in polypropylene where our results are one and two orders of magnitude higher, respectively. Grand Canonical Monte Carlo (GCMC) simulations were used to determine the sorption loading and saturation concentration of H2O, O2and H2in iPP, where we find good agreement for H2O with experimental results. By means of MD simulation the glass transition temperature (Tg) of iPP was estimated to 273.66 ± 4.21 K which is consistent with previously published experimental results.
Erscheinungsjahr
2022
Zeitschriftentitel
Journal of Polymer Research
Band
29
Ausgabe
11
Art.-Nr.
463
ISSN
1022-9760
eISSN
1572-8935
Page URI
https://pub.uni-bielefeld.de/record/2966270

Zitieren

Deckers F, Rasim K, Schröder C. Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. Journal of Polymer Research. 2022;29(11): 463.
Deckers, F., Rasim, K., & Schröder, C. (2022). Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. Journal of Polymer Research, 29(11), 463. https://doi.org/10.1007/s10965-022-03304-y
Deckers, Fabian, Rasim, Karsten, and Schröder, Christian. 2022. “Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature”. Journal of Polymer Research 29 (11): 463.
Deckers, F., Rasim, K., and Schröder, C. (2022). Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. Journal of Polymer Research 29:463.
Deckers, F., Rasim, K., & Schröder, C., 2022. Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. Journal of Polymer Research, 29(11): 463.
F. Deckers, K. Rasim, and C. Schröder, “Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature”, Journal of Polymer Research, vol. 29, 2022, : 463.
Deckers, F., Rasim, K., Schröder, C.: Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. Journal of Polymer Research. 29, : 463 (2022).
Deckers, Fabian, Rasim, Karsten, and Schröder, Christian. “Molecular dynamics simulation of polypropylene: diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature”. Journal of Polymer Research 29.11 (2022): 463.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2022-10-11T06:57:47Z
MD5 Prüfsumme
5e6f25c88a1249bd360c3b2e61aa0186


Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar