Temporal regularity of symmetric stochastic $p$-Stokes systems
Wichmann J (2022)
arXiv:2209.02796.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
We study the symmetric stochastic $p$-Stokes system in a bounded domain. The results are three-folded. First, we show that the stochastic pressure -- related to non-divergence free stochastic forces-- enjoys $-1/2$ temporal derivatives. Second, we verify that the velocity component of strong solutions obey $1/2$ temporal derivatives on an exponential Besov space. Third, we prove that the non-linear symmetric gradient $V(\varepsilon u) = (\kappa + \abs{\varepsilon u})^{(p-2)/2} \varepsilon u$ has $1/2$ temporal derivatives in a Nikolskii space.
Erscheinungsjahr
2022
Zeitschriftentitel
arXiv:2209.02796
Page URI
https://pub.uni-bielefeld.de/record/2965698
Zitieren
Wichmann J. Temporal regularity of symmetric stochastic $p$-Stokes systems. arXiv:2209.02796. 2022.
Wichmann, J. (2022). Temporal regularity of symmetric stochastic $p$-Stokes systems. arXiv:2209.02796
Wichmann, Jörn. 2022. “Temporal regularity of symmetric stochastic $p$-Stokes systems”. arXiv:2209.02796.
Wichmann, J. (2022). Temporal regularity of symmetric stochastic $p$-Stokes systems. arXiv:2209.02796.
Wichmann, J., 2022. Temporal regularity of symmetric stochastic $p$-Stokes systems. arXiv:2209.02796.
J. Wichmann, “Temporal regularity of symmetric stochastic $p$-Stokes systems”, arXiv:2209.02796, 2022.
Wichmann, J.: Temporal regularity of symmetric stochastic $p$-Stokes systems. arXiv:2209.02796. (2022).
Wichmann, Jörn. “Temporal regularity of symmetric stochastic $p$-Stokes systems”. arXiv:2209.02796 (2022).