Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units
Kreis C, Aguirre A, Cifuentes CA, Munera M, Jiménez MF, Schneider S (2022)
Sensors 22(17): 6524.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
sensors-22-06524.pdf
2.40 MB
Autor*in
Kreis, Christopher;
Aguirre, Andres;
Cifuentes, Carlos A.;
Munera, Marcela;
Jiménez, Mario F.;
Schneider, SebastianUniBi
Einrichtung
Abstract / Bemerkung
Physical exercise has become an essential tool for treating various non-communicable diseases (also known as chronic diseases). Due to this, physical exercise allows to counter different symptoms and reduce some risk of death factors without medication. A solution to support people in doing exercises is to use artificial systems that monitor their exercise progress. While one crucial aspect is to monitor the correct physical motions for rehabilitative exercise, another essential element is to give encouraging feedback during workouts. A coaching system can track a user’s exhaustion and give motivating feedback accordingly to boost exercise adherence. For this purpose, this research investigates whether it is possible to predict the subjective exhaustion level based on non-invasive and non-wearable technology. A novel data set was recorded with the facial record as the primary predictor and individual exhaustion levels as the predicted variable. 60 participants (30 male, 30 female) took part in the data recording. 17 facial action units (AU) were extracted as predictor variables for the perceived subjective exhaustion measured using the BORG scale. Using the predictor and the target variables, several regression and classification methods were evaluated aiming to predict exhaustion. The results showed that the decision tree and support vector methods provide reasonable prediction results. The limitation of the results, depending on participants being in the training data set and subjective variables (e.g., participants smiling during the exercises) were further discussed.
Erscheinungsjahr
2022
Zeitschriftentitel
Sensors
Band
22
Ausgabe
17
Art.-Nr.
6524
Urheberrecht / Lizenzen
eISSN
1424-8220
Page URI
https://pub.uni-bielefeld.de/record/2965464
Zitieren
Kreis C, Aguirre A, Cifuentes CA, Munera M, Jiménez MF, Schneider S. Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units. Sensors. 2022;22(17): 6524.
Kreis, C., Aguirre, A., Cifuentes, C. A., Munera, M., Jiménez, M. F., & Schneider, S. (2022). Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units. Sensors, 22(17), 6524. https://doi.org/10.3390/s22176524
Kreis, Christopher, Aguirre, Andres, Cifuentes, Carlos A., Munera, Marcela, Jiménez, Mario F., and Schneider, Sebastian. 2022. “Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units”. Sensors 22 (17): 6524.
Kreis, C., Aguirre, A., Cifuentes, C. A., Munera, M., Jiménez, M. F., and Schneider, S. (2022). Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units. Sensors 22:6524.
Kreis, C., et al., 2022. Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units. Sensors, 22(17): 6524.
C. Kreis, et al., “Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units”, Sensors, vol. 22, 2022, : 6524.
Kreis, C., Aguirre, A., Cifuentes, C.A., Munera, M., Jiménez, M.F., Schneider, S.: Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units. Sensors. 22, : 6524 (2022).
Kreis, Christopher, Aguirre, Andres, Cifuentes, Carlos A., Munera, Marcela, Jiménez, Mario F., and Schneider, Sebastian. “Predicting Perceived Exhaustion in Rehabilitation Exercises Using Facial Action Units”. Sensors 22.17 (2022): 6524.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
sensors-22-06524.pdf
2.40 MB
Access Level
Open Access
Zuletzt Hochgeladen
2022-08-31T13:15:29Z
MD5 Prüfsumme
f7a9fb048df448525c674744c1af8dc5
Link(s) zu Volltext(en)
Access Level
Open Access
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 36080983
PubMed | Europe PMC
Suchen in