Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021)

Banas L, Röckner M, Wilke A (2022)
Stochastics and Partial Differential Equations : Analysis and Computations .

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We correct two errors in our paper [4]. First error concerns the definition of the SVI solution, where a boundary term which arises due to the Dirichlet boundary condition, was not included. The second error concerns the discrete estimate [4, Lemma 4.4], which involves the discrete Laplace operator. We provide an alternative proof of the estimate in spatial dimension d = 1 by using a mass lumped version of the discrete Laplacian. Hence, after a minor modification of the fully discrete numerical scheme the convergence in d = 1 follows along the lines of the original proof. The convergence proof of the time semi-discrete scheme, which relies on the continuous counterpart of the estimate [4, Lemma 4.4], remains valid in higher spatial dimension. The convergence of the fully discrete finite element scheme from [4] in any spatial dimension is shown in [3] by using a different approach.
Erscheinungsjahr
2022
Zeitschriftentitel
Stochastics and Partial Differential Equations : Analysis and Computations
ISSN
2194-0401
eISSN
2194-041X
Page URI
https://pub.uni-bielefeld.de/record/2965241

Zitieren

Banas L, Röckner M, Wilke A. Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021). Stochastics and Partial Differential Equations : Analysis and Computations . 2022.
Banas, L., Röckner, M., & Wilke, A. (2022). Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021). Stochastics and Partial Differential Equations : Analysis and Computations . https://doi.org/10.1007/s40072-022-00267-5
Banas, Lubomir, Röckner, Michael, and Wilke, Andre. 2022. “Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021)”. Stochastics and Partial Differential Equations : Analysis and Computations .
Banas, L., Röckner, M., and Wilke, A. (2022). Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021). Stochastics and Partial Differential Equations : Analysis and Computations .
Banas, L., Röckner, M., & Wilke, A., 2022. Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021). Stochastics and Partial Differential Equations : Analysis and Computations .
L. Banas, M. Röckner, and A. Wilke, “Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021)”, Stochastics and Partial Differential Equations : Analysis and Computations , 2022.
Banas, L., Röckner, M., Wilke, A.: Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021). Stochastics and Partial Differential Equations : Analysis and Computations . (2022).
Banas, Lubomir, Röckner, Michael, and Wilke, Andre. “Correction to: Convergent numerical approximation of the stochastic total variation flow (vol 9, pg 437, 2021)”. Stochastics and Partial Differential Equations : Analysis and Computations (2022).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar