Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits

Hofmanová M, Koley U, Sarkar U (2022)
Communications in Partial Differential Equations.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hofmanová, MartinaUniBi; Koley, Ujjwal; Sarkar, Utsab
Abstract / Bemerkung
We introduce a new concept of dissipative measure-valued martingale solutions to the stochastic compressible Euler equations. These solutions are weak in the probabilistic sense i.e., the probability space and the driving Wiener process are an integral part of the solution. We derive the relative energy inequality for the stochastic compressible Euler equations and, as a corollary, we exhibit pathwise weak-strong uniqueness principle. Moreover, making use of the relative energy inequality, we investigate the low Mach limit (incompressible limit) of underlying system of equations. As a main novelty with respect to the related literature, our results apply to general nonlinear multiplicative stochastic perturbations of Nemytskij type.
Stichworte
Compressible fluids; dissipative solution; Euler system; low mach limit; measure-valued solution; Navier-Stokes system; stochastic forcing; weak-strong uniqueness
Erscheinungsjahr
2022
Zeitschriftentitel
Communications in Partial Differential Equations
ISSN
0360-5302
eISSN
1532-4133
Page URI
https://pub.uni-bielefeld.de/record/2964928

Zitieren

Hofmanová M, Koley U, Sarkar U. Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits. Communications in Partial Differential Equations. 2022.
Hofmanová, M., Koley, U., & Sarkar, U. (2022). Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits. Communications in Partial Differential Equations. https://doi.org/10.1080/03605302.2022.2101002
Hofmanová, Martina, Koley, Ujjwal, and Sarkar, Utsab. 2022. “Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits”. Communications in Partial Differential Equations.
Hofmanová, M., Koley, U., and Sarkar, U. (2022). Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits. Communications in Partial Differential Equations.
Hofmanová, M., Koley, U., & Sarkar, U., 2022. Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits. Communications in Partial Differential Equations.
M. Hofmanová, U. Koley, and U. Sarkar, “Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits”, Communications in Partial Differential Equations, 2022.
Hofmanová, M., Koley, U., Sarkar, U.: Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits. Communications in Partial Differential Equations. (2022).
Hofmanová, Martina, Koley, Ujjwal, and Sarkar, Utsab. “Measure-valued solutions to the stochastic compressible Euler equations and incompressible limits”. Communications in Partial Differential Equations (2022).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar