Measure Theoretic Entropy of Random Substitution Subshifts
Gohlke P, Mitchell A, Rust D, Samuel T (2022)
Annales Henri Poincaré .
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gohlke, PhilippUniBi;
Mitchell, A.;
Rust, D.;
Samuel, T.
Einrichtung
Abstract / Bemerkung
Subshifts of deterministic substitutions are ubiquitous objects in dynamical systems and aperiodic order (the mathematical theory of quasicrystals). Two of their most striking features are that they have low complexity (zero topological entropy) and are uniquely ergodic. Random substitutions are a generalisation of deterministic substitutions where the substituted image of a letter is determined by a Markov process. In stark contrast to their deterministic counterparts, subshifts of random substitutions often have positive topological entropy, and support uncountably many ergodic measures. The underlying Markov process singles out one of the ergodic measures, called the frequency measure. Here, we develop new techniques for computing and studying the entropy of these frequency measures. As an application of our results, we obtain closed form formulas for the entropy of frequency measures for a wide range of random substitution subshifts and show that in many cases there exists a frequency measure of maximal entropy. Further, for a class of random substitution subshifts, we prove that this measure is the unique measure of maximal entropy. These subshifts do not satisfy Bowen's specification property or the weaker specification property of Climenhaga and Thompson and hence provide an interesting new class of intrinsically ergodic subshifts.
Stichworte
37B10;
37A25;
37A50;
52C23
Erscheinungsjahr
2022
Zeitschriftentitel
Annales Henri Poincaré
ISSN
1424-0637
eISSN
1424-0661
Page URI
https://pub.uni-bielefeld.de/record/2964651
Zitieren
Gohlke P, Mitchell A, Rust D, Samuel T. Measure Theoretic Entropy of Random Substitution Subshifts. Annales Henri Poincaré . 2022.
Gohlke, P., Mitchell, A., Rust, D., & Samuel, T. (2022). Measure Theoretic Entropy of Random Substitution Subshifts. Annales Henri Poincaré . https://doi.org/10.1007/s00023-022-01212-x
Gohlke, Philipp, Mitchell, A., Rust, D., and Samuel, T. 2022. “Measure Theoretic Entropy of Random Substitution Subshifts”. Annales Henri Poincaré .
Gohlke, P., Mitchell, A., Rust, D., and Samuel, T. (2022). Measure Theoretic Entropy of Random Substitution Subshifts. Annales Henri Poincaré .
Gohlke, P., et al., 2022. Measure Theoretic Entropy of Random Substitution Subshifts. Annales Henri Poincaré .
P. Gohlke, et al., “Measure Theoretic Entropy of Random Substitution Subshifts”, Annales Henri Poincaré , 2022.
Gohlke, P., Mitchell, A., Rust, D., Samuel, T.: Measure Theoretic Entropy of Random Substitution Subshifts. Annales Henri Poincaré . (2022).
Gohlke, Philipp, Mitchell, A., Rust, D., and Samuel, T. “Measure Theoretic Entropy of Random Substitution Subshifts”. Annales Henri Poincaré (2022).
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in