Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR

Fandrich P, Annegarn M, Wiehemeier L, Ehring I, Kottke T, Hellweg T (2022)
Soft Matter 18(29): 5492-5501.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
While core–shell microgels have been intensively studied in their fully synthesized state, the formation mechanism of the shell has not been completely understood. Such insight is decisive for a customization of microgel properties for applications. In this work, microgels based on aN-isopropylmethacrylamide (NiPMAM) core and aN-n-propylacrylamide (NnPAM) shell are synthesized in a continuous flow reactor. The shell growth is studied depending on the solution's time of residence inside the reactor. PCS experiments reveal a significant decrease of the volume phase transition temperatures of the core and the shell, with increasing residence time. At early stages, a decreased swelling capacity is found before a discrete NnPAM shell is formed. Temperature-dependent FTIR spectroscopy shows that the decreased swelling capacity originates from a pronounced interpenetrated network (IPN) between NnPAM and NiPMAM. AFM images resolve heterogeneously distributed shell material after 3 min, pointing to an aggregation of NnPAM domains before the distinct shell forms. The combination of diffusional properties, AFM images and vibrational information confirms a deeply interpenetrated network already at early stages of the precipitation polymerization, in which the shell material heavily influences the swelling properties.
Erscheinungsjahr
2022
Zeitschriftentitel
Soft Matter
Band
18
Ausgabe
29
Seite(n)
5492-5501
ISSN
1744-683X
eISSN
1744-6848
Page URI
https://pub.uni-bielefeld.de/record/2967123

Zitieren

Fandrich P, Annegarn M, Wiehemeier L, Ehring I, Kottke T, Hellweg T. Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR. Soft Matter. 2022;18(29):5492-5501.
Fandrich, P., Annegarn, M., Wiehemeier, L., Ehring, I., Kottke, T., & Hellweg, T. (2022). Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR. Soft Matter, 18(29), 5492-5501. https://doi.org/10.1039/D2SM00598K
Fandrich, Pascal, Annegarn, Marco, Wiehemeier, Lars, Ehring, Ina, Kottke, Tilman, and Hellweg, Thomas. 2022. “Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR”. Soft Matter 18 (29): 5492-5501.
Fandrich, P., Annegarn, M., Wiehemeier, L., Ehring, I., Kottke, T., and Hellweg, T. (2022). Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR. Soft Matter 18, 5492-5501.
Fandrich, P., et al., 2022. Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR. Soft Matter, 18(29), p 5492-5501.
P. Fandrich, et al., “Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR”, Soft Matter, vol. 18, 2022, pp. 5492-5501.
Fandrich, P., Annegarn, M., Wiehemeier, L., Ehring, I., Kottke, T., Hellweg, T.: Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR. Soft Matter. 18, 5492-5501 (2022).
Fandrich, Pascal, Annegarn, Marco, Wiehemeier, Lars, Ehring, Ina, Kottke, Tilman, and Hellweg, Thomas. “Core–shell microgels synthesized in continuous flow: deep insight into shell growth using temperature-dependent FTIR”. Soft Matter 18.29 (2022): 5492-5501.

Link(s) zu Volltext(en)
Access Level
OA Open Access

Material in PUB:
Dissertation, die diesen PUB Eintrag enthält
Preparation and Investigation of Responsive Microgels in Flow Reactors
Fandrich P (2022)
Bielefeld: Universität Bielefeld.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 35843118
PubMed | Europe PMC

Suchen in

Google Scholar