Gorenstein-projective modules over short local algebras

Ringel CM, Zhang P (2022)
Journal of the London Mathematical Society .

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
Following the well-established terminology in commutative algebra, any (not necessarily commutative) finite-dimensional local algebra.. with radical.. will be said to be short provided J(3) = 0. As in the commutative case, we show: If a short local algebra.. has an indecomposable non-projective Gorenstein-projective module M, then either A is self-injective (so that all modules are Gorenstein-projective) and then, of course, vertical bar J(2)vertical bar <= 1, or else vertical bar J(2)vertical bar = vertical bar J/J(2)vertical bar - 1 and vertical bar JM vertical bar = vertical bar J(2)vertical bar vertical bar M/JM vertical bar. More generally, we focus the attention to semi-Gorensteinprojective and 8-torsionfree modules, even to Omega-paths of length 2, 3 and 4. In particular, we show that the existence of a non-projective reflexive module implies that vertical bar J(2)vertical bar < vertical bar J/J(2)vertical bar and further restrictions. In addition, we consider exact complexes of projective modules with a non-projective image. Again, as in the commutative case, we see that if such a complex exists, then.. is self-injective or satisfies the condition vertical bar J(2)vertical bar = vertical bar J/J(2)vertical bar - 1. Also, we show that any non-projective semi-Gorensteinprojective module M satisfies Ext(1)(M, M) not equal 0. In this way, we prove the Auslander-Reiten conjecture (one of the classical homological conjectures) for arbitrary short local algebras. Many arguments used in the commutative case actually work in general, but there are interesting differences and some of our results may be new also in the commutative case.
Erscheinungsjahr
2022
Zeitschriftentitel
Journal of the London Mathematical Society
ISSN
0024-6107
eISSN
1469-7750
Page URI
https://pub.uni-bielefeld.de/record/2964342

Zitieren

Ringel CM, Zhang P. Gorenstein-projective modules over short local algebras. Journal of the London Mathematical Society . 2022.
Ringel, C. M., & Zhang, P. (2022). Gorenstein-projective modules over short local algebras. Journal of the London Mathematical Society . https://doi.org/10.1112/jlms.12577
Ringel, Claus Michael, and Zhang, Pu. 2022. “Gorenstein-projective modules over short local algebras”. Journal of the London Mathematical Society .
Ringel, C. M., and Zhang, P. (2022). Gorenstein-projective modules over short local algebras. Journal of the London Mathematical Society .
Ringel, C.M., & Zhang, P., 2022. Gorenstein-projective modules over short local algebras. Journal of the London Mathematical Society .
C.M. Ringel and P. Zhang, “Gorenstein-projective modules over short local algebras”, Journal of the London Mathematical Society , 2022.
Ringel, C.M., Zhang, P.: Gorenstein-projective modules over short local algebras. Journal of the London Mathematical Society . (2022).
Ringel, Claus Michael, and Zhang, Pu. “Gorenstein-projective modules over short local algebras”. Journal of the London Mathematical Society (2022).
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar