Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics
Banas L, Dawid H, Randrianasolo TA, Storn J, Wen X (2022)
Journal of Scientific Computing 92: 54.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
s10915-022-01892-x.pdf
2.36 MB
Autor*in
Einrichtung
Projekt
Abstract / Bemerkung
We consider a system of fully nonlinear partial differential equations that corresponds to the Hamilton–Jacobi–Bellman equations for the value functions of an optimal innovation investment problem of a monopoly firm facing bankruptcy risk. We compare several algorithms for the numerical solution of the considered problem: the collocation method, the finite difference method, WENO method and the adaptive finite element method. We discuss implementation issues for the considered schemes and perform numerical studies for different model parameters to assess their performance.
Erscheinungsjahr
2022
Zeitschriftentitel
Journal of Scientific Computing
Band
92
Art.-Nr.
54
Urheberrecht / Lizenzen
ISSN
0885-7474
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2964034
Zitieren
Banas L, Dawid H, Randrianasolo TA, Storn J, Wen X. Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing. 2022;92: 54.
Banas, L., Dawid, H., Randrianasolo, T. A., Storn, J., & Wen, X. (2022). Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing, 92, 54. https://doi.org/10.1007/s10915-022-01892-x
Banas, Lubomir, Dawid, Herbert, Randrianasolo, Tsiry Avisoa, Storn, Johannes, and Wen, Xingang. 2022. “Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics”. Journal of Scientific Computing 92: 54.
Banas, L., Dawid, H., Randrianasolo, T. A., Storn, J., and Wen, X. (2022). Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing 92:54.
Banas, L., et al., 2022. Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing, 92: 54.
L. Banas, et al., “Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics”, Journal of Scientific Computing, vol. 92, 2022, : 54.
Banas, L., Dawid, H., Randrianasolo, T.A., Storn, J., Wen, X.: Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing. 92, : 54 (2022).
Banas, Lubomir, Dawid, Herbert, Randrianasolo, Tsiry Avisoa, Storn, Johannes, and Wen, Xingang. “Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics”. Journal of Scientific Computing 92 (2022): 54.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s10915-022-01892-x.pdf
2.36 MB
Access Level
Open Access
Zuletzt Hochgeladen
2023-12-06T10:07:17Z
MD5 Prüfsumme
fd156db4ee9e53904b1b1dbc61a4816f
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in