Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics

Banas L, Dawid H, Randrianasolo TA, Storn J, Wen X (2022)
Journal of Scientific Computing 92: 54.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We consider a system of fully nonlinear partial differential equations that corresponds to the Hamilton–Jacobi–Bellman equations for the value functions of an optimal innovation investment problem of a monopoly firm facing bankruptcy risk. We compare several algorithms for the numerical solution of the considered problem: the collocation method, the finite difference method, WENO method and the adaptive finite element method. We discuss implementation issues for the considered schemes and perform numerical studies for different model parameters to assess their performance.
Erscheinungsjahr
2022
Zeitschriftentitel
Journal of Scientific Computing
Band
92
Art.-Nr.
54
ISSN
0885-7474
Page URI
https://pub.uni-bielefeld.de/record/2964034

Zitieren

Banas L, Dawid H, Randrianasolo TA, Storn J, Wen X. Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing. 2022;92: 54.
Banas, L., Dawid, H., Randrianasolo, T. A., Storn, J., & Wen, X. (2022). Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing, 92, 54. https://doi.org/10.1007/s10915-022-01892-x
Banas, L., Dawid, H., Randrianasolo, T. A., Storn, J., and Wen, X. (2022). Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing 92:54.
Banas, L., et al., 2022. Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing, 92: 54.
L. Banas, et al., “Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics”, Journal of Scientific Computing, vol. 92, 2022, : 54.
Banas, L., Dawid, H., Randrianasolo, T.A., Storn, J., Wen, X.: Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics. Journal of Scientific Computing. 92, : 54 (2022).
Banas, Lubomir, Dawid, Herbert, Randrianasolo, Tsiry Avisoa, Storn, Johannes, and Wen, Xingang. “Numerical approximation of a system of Hamilton-Jacobi-Bellman equations arising in innovation dynamics”. Journal of Scientific Computing 92 (2022): 54.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar