Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance

Dreyer A, Rempel T, Gottschalk M, Zierold R, Weimer A, Feld A, Schneider GA, Weller H, Hütten A (2022)
Advanced Electronic Materials : 2200082.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Dreyer, AxelUniBi; Rempel, ThomasUniBi; Gottschalk, MartinUniBi; Zierold, Robert; Weimer, Agnes; Feld, Artur; Schneider, Gerold A.; Weller, Horst; Hütten, AndreasUniBi
Abstract / Bemerkung
The spin-dependent electrical transport in rigid inorganic-inorganic layered systems is extensively applied for the detection of magnetic fields in data storage. In this work, spin-dependent electrical transport in flexible organic-inorganic supercrystals based on superparamagnetic iron oxide nanoparticles is investigated. These nanoparticles are stabilized by oleic acid ligands, which in turn are serving as tunneling barriers between individual magnetic nanoparticles. The resulting tunneling magnetoresistance (TMR) is tunable due to the elastic properties of these organic barriers. Applying external mechanical stress on this composite material will change the average distance between adjacent nanoparticles and will hence determine the resulting TMR-effect amplitude. Thus, measured stress-induced changes in the barrier thickness at sub-nanometer scale allow for determining the mechanical properties of organic barrier molecules in the confined space between the particles. These results provide the foundation for a new type of mechanical sensor.
Stichworte
force sensor; nanoparticle; organic barrier; supercrystal; tunneling; conductance
Erscheinungsjahr
2022
Zeitschriftentitel
Advanced Electronic Materials
Art.-Nr.
2200082
eISSN
2199-160X
Page URI
https://pub.uni-bielefeld.de/record/2963820

Zitieren

Dreyer A, Rempel T, Gottschalk M, et al. Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance. Advanced Electronic Materials . 2022: 2200082.
Dreyer, A., Rempel, T., Gottschalk, M., Zierold, R., Weimer, A., Feld, A., Schneider, G. A., et al. (2022). Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance. Advanced Electronic Materials , 2200082. https://doi.org/10.1002/aelm.202200082
Dreyer, A., Rempel, T., Gottschalk, M., Zierold, R., Weimer, A., Feld, A., Schneider, G. A., Weller, H., and Hütten, A. (2022). Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance. Advanced Electronic Materials :2200082.
Dreyer, A., et al., 2022. Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance. Advanced Electronic Materials , : 2200082.
A. Dreyer, et al., “Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance”, Advanced Electronic Materials , 2022, : 2200082.
Dreyer, A., Rempel, T., Gottschalk, M., Zierold, R., Weimer, A., Feld, A., Schneider, G.A., Weller, H., Hütten, A.: Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance. Advanced Electronic Materials . : 2200082 (2022).
Dreyer, Axel, Rempel, Thomas, Gottschalk, Martin, Zierold, Robert, Weimer, Agnes, Feld, Artur, Schneider, Gerold A., Weller, Horst, and Hütten, Andreas. “Spin- and Stress-Depending Electrical Transport in Nanoparticle Supercrystals: Sensing Elastic Properties of Organic Tunnel Barriers via Tunneling Magnetoresistance”. Advanced Electronic Materials (2022): 2200082.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar