Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$

Akemann G, Mielke A, Päßler P (2021)
Physical Review E 106(1): 014146.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
A random matrix representation is proposed for the two-dimensional (2D) Coulomb gas at inverse temperature β. For 2×2 matrices with Gaussian distribution we analytically compute the nearest-neighbor spacing distribution of complex eigenvalues in radial distance. Because it does not provide such a good approximation as the Wigner surmise in 1D, we introduce an effective β_{eff}(β) in our analytic formula that describes the spacing obtained numerically from the 2D Coulomb gas well for small values of β. It reproduces the 2D Poisson distribution at β=0 exactly, that is valid for a large particle number. The surmise is used to fit data in two examples, from open quantum spin chains and ecology. The spacing distributions of complex symmetric and complex quaternion self-dual ensembles of non-Hermitian random matrices, that are only known numerically, are very well fitted by noninteger values β=1.4 and β=2.6 from a 2D Coulomb gas, respectively. These two ensembles have been suggested as the only two symmetry classes, where the 2D bulk statistics is different from the Ginibre ensemble.
Erscheinungsjahr
2021
Zeitschriftentitel
Physical Review E
Band
106
Ausgabe
1
Art.-Nr.
014146
ISSN
1063-651X
eISSN
2470-0053
Page URI
https://pub.uni-bielefeld.de/record/2963771

Zitieren

Akemann G, Mielke A, Päßler P. Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. Physical Review E . 2021;106(1): 014146.
Akemann, G., Mielke, A., & Päßler, P. (2021). Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. Physical Review E , 106(1), 014146. https://doi.org/10.1103/PhysRevE.106.014146
Akemann, Gernot, Mielke, Adam, and Päßler, Patricia. 2021. “Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$”. Physical Review E 106 (1): 014146.
Akemann, G., Mielke, A., and Päßler, P. (2021). Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. Physical Review E 106:014146.
Akemann, G., Mielke, A., & Päßler, P., 2021. Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. Physical Review E , 106(1): 014146.
G. Akemann, A. Mielke, and P. Päßler, “Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$”, Physical Review E , vol. 106, 2021, : 014146.
Akemann, G., Mielke, A., Päßler, P.: Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. Physical Review E . 106, : 014146 (2021).
Akemann, Gernot, Mielke, Adam, and Päßler, Patricia. “Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$”. Physical Review E 106.1 (2021): 014146.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 35974587
PubMed | Europe PMC

arXiv: 2112.12624

Preprint: 10.48550/arXiv.2112.12624

Suchen in

Google Scholar