Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$
Akemann G, Mielke A, Päßler P (2021)
arXiv:2112.12624.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Einrichtung
Abstract / Bemerkung
A random matrix representation is proposed for the two-dimensional (2D)
Coulomb gas at inverse temperature $\beta$. For $2\times 2$ matrices with
Gaussian distribution this yields a surmise for the nearest neighbour spacing
distribution of complex eigenvalues in radial distance. It reproduces the 2D
Poisson distribution at $\beta=0$ and approximates the complex Ginibre ensemble
at $\beta=2$. The surmise is used to fit data from open quantum spin chains and
ecology. The spacing distributions of complex symmetric and complex quaternion
self-dual ensembles are fitted by non-integer values $\beta=1.4$ and
$\beta=2.6$, respectively. They have been suggested as the only two symmetry
classes with 2D bulk statistics different from the Ginibre ensemble.
Erscheinungsjahr
2021
Zeitschriftentitel
arXiv:2112.12624
Page URI
https://pub.uni-bielefeld.de/record/2963771
Zitieren
Akemann G, Mielke A, Päßler P. Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. arXiv:2112.12624. 2021.
Akemann, G., Mielke, A., & Päßler, P. (2021). Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. arXiv:2112.12624
Akemann, G., Mielke, A., and Päßler, P. (2021). Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. arXiv:2112.12624.
Akemann, G., Mielke, A., & Päßler, P., 2021. Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. arXiv:2112.12624.
G. Akemann, A. Mielke, and P. Päßler, “Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$”, arXiv:2112.12624, 2021.
Akemann, G., Mielke, A., Päßler, P.: Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$. arXiv:2112.12624. (2021).
Akemann, Gernot, Mielke, Adam, and Päßler, Patricia. “Spacing distribution in the 2D Coulomb gas: Surmise and symmetry classes of non-Hermitian random matrices at non-integer $β$”. arXiv:2112.12624 (2021).