The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$
Akemann G, Byun S-S (2023)
Constructive Approximation : s00365-023-09628-2.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Akemann, GernotUniBi;
Byun, Sung-Soo
Einrichtung
Abstract / Bemerkung
We study the product Pm of m real Ginibre matrices with Gaussian elements of size N, which has received renewed interest recently. Its eigenvalues, which are either real or come in complex conjugate pairs, become all real with probability one when m→∞ at fixed N. In this regime the statistics becomes deterministic and the Lyapunov spectrum has been derived long ago. On the other hand, when N→∞ and m is fixed, it can be expected that away from the origin the same local statistics as for a single real Ginibre ensemble at m=1 prevails. Inspired by analogous findings for products of complex Ginibre matrices, we introduce a critical scaling regime when the two parameters are proportional, m=αN. We derive the expected number, variance and rescaled density of real eigenvalues in this critical regime. This allows us to interpolate between previous recent results in the above mentioned limits when α→∞ and α→0, respectively.
Erscheinungsjahr
2023
Zeitschriftentitel
Constructive Approximation
Art.-Nr.
s00365-023-09628-2
ISSN
0176-4276
eISSN
1432-0940
Page URI
https://pub.uni-bielefeld.de/record/2963770
Zitieren
Akemann G, Byun S-S. The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$. Constructive Approximation . 2023: s00365-023-09628-2.
Akemann, G., & Byun, S. - S. (2023). The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$. Constructive Approximation , s00365-023-09628-2. https://doi.org/10.1007/s00365-023-09628-2
Akemann, Gernot, and Byun, Sung-Soo. 2023. “The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$”. Constructive Approximation : s00365-023-09628-2.
Akemann, G., and Byun, S. - S. (2023). The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$. Constructive Approximation :s00365-023-09628-2.
Akemann, G., & Byun, S.-S., 2023. The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$. Constructive Approximation , : s00365-023-09628-2.
G. Akemann and S.-S. Byun, “The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$”, Constructive Approximation , 2023, : s00365-023-09628-2.
Akemann, G., Byun, S.-S.: The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$. Constructive Approximation . : s00365-023-09628-2 (2023).
Akemann, Gernot, and Byun, Sung-Soo. “The Product of $m$ real $N\times N$ Ginibre matrices: Real eigenvalues in the critical regime $m=O(N)$”. Constructive Approximation (2023): s00365-023-09628-2.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 2201.07668
Suchen in