Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping

Bai H, Cheng R, Yazdani D, Tan KC, Jin Y (2022)
IEEE Transactions on Cybernetics .

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bai, Hui; Cheng, Ran; Yazdani, Danial; Tan, Kay Chen; Jin, YaochuUniBi
Abstract / Bemerkung
Variable grouping provides an efficient approach to large-scale optimization, and multipopulation strategies are effective for both large-scale optimization and dynamic optimization. However, variable grouping is not well studied in large-scale dynamic optimization when cooperating with multipopulation strategies. Specifically, when the numbers/sizes of the variable subcomponents are large, the performance of the algorithms will be substantially degraded. To address this issue, we propose a bilevel variable grouping (BLVG)-based framework. First, the primary grouping applies a state-of-the-art variable grouping method based on variable interaction analysis to group the variables into subcomponents. Second, the secondary grouping further groups the subcomponents into variable cells, that is, combination variable cells and decomposition variable cells. We then tailor a multipopulation strategy to process the two types of variable cells efficiently in a cooperative coevolutionary (CC) way. As indicated by the empirical study on large-scale dynamic optimization problems (DOPs) of up to 300 dimensions, the proposed framework outperforms several state-of-the-art frameworks for large-scale dynamic optimization.
Stichworte
Optimization; Statistics; Sociology; Resource management; Heuristic; algorithms; Dynamic scheduling; Vehicle dynamics; Computational; resources allocation; cooperative coevolution (CC); dynamic; optimization; large-scale optimization problems; multipopulation; variable grouping
Erscheinungsjahr
2022
Zeitschriftentitel
IEEE Transactions on Cybernetics
ISSN
2168-2267
eISSN
2168-2275
Page URI
https://pub.uni-bielefeld.de/record/2963475

Zitieren

Bai H, Cheng R, Yazdani D, Tan KC, Jin Y. Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping. IEEE Transactions on Cybernetics . 2022.
Bai, H., Cheng, R., Yazdani, D., Tan, K. C., & Jin, Y. (2022). Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping. IEEE Transactions on Cybernetics . https://doi.org/10.1109/TCYB.2022.3164143
Bai, Hui, Cheng, Ran, Yazdani, Danial, Tan, Kay Chen, and Jin, Yaochu. 2022. “Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping”. IEEE Transactions on Cybernetics .
Bai, H., Cheng, R., Yazdani, D., Tan, K. C., and Jin, Y. (2022). Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping. IEEE Transactions on Cybernetics .
Bai, H., et al., 2022. Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping. IEEE Transactions on Cybernetics .
H. Bai, et al., “Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping”, IEEE Transactions on Cybernetics , 2022.
Bai, H., Cheng, R., Yazdani, D., Tan, K.C., Jin, Y.: Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping. IEEE Transactions on Cybernetics . (2022).
Bai, Hui, Cheng, Ran, Yazdani, Danial, Tan, Kay Chen, and Jin, Yaochu. “Evolutionary Large-Scale Dynamic Optimization Using Bilevel Variable Grouping”. IEEE Transactions on Cybernetics (2022).

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 35544503
PubMed | Europe PMC

Suchen in

Google Scholar