A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization
Han D, Du W, Jin Y, Du W, Yu G (2022)
Information Sciences 597: 318-340.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Han, Dong;
Du, Wenli;
Jin, YaochuUniBi ;
Du, Wei;
Yu, Guo
Abstract / Bemerkung
The challenge in solving constrained multi-objective optimization problems (CMOPs) is how to balance minimizing objectives and satisfying constraints, especially when the infeasible region is very large. To address this issue, this work proposes a fuzzy constraint handling technique, which uses the fuzzy set theory to accurately characterize the differ-ence between solutions on objective function values and constraint violation degrees. On this basis, a new concept, called "fuzzy advantage", is introduced to comprehensively quantify the degree to which one solution is better than others, allowing the infeasible solutions with promising fitness to survive. The proposed method is integrated with a decomposition-based multi-objective evolutionary algorithm to verify its effectiveness. Compared with nine state-of-the-art MOEAs on a number of test problems and a real -world optimization problem, the proposed algorithm shows high competitiveness in solv -ing a variety of CMOPs.(c) 2022 Published by Elsevier Inc.
Stichworte
Constrained multi-objective optimization;
Evolutionary algorithm;
Constraint handling technique;
Fuzzy set
Erscheinungsjahr
2022
Zeitschriftentitel
Information Sciences
Band
597
Seite(n)
318-340
ISSN
0020-0255
eISSN
1872-6291
Page URI
https://pub.uni-bielefeld.de/record/2963471
Zitieren
Han D, Du W, Jin Y, Du W, Yu G. A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization. Information Sciences . 2022;597:318-340.
Han, D., Du, W., Jin, Y., Du, W., & Yu, G. (2022). A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization. Information Sciences , 597, 318-340. https://doi.org/10.1016/j.ins.2022.03.030
Han, Dong, Du, Wenli, Jin, Yaochu, Du, Wei, and Yu, Guo. 2022. “A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization”. Information Sciences 597: 318-340.
Han, D., Du, W., Jin, Y., Du, W., and Yu, G. (2022). A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization. Information Sciences 597, 318-340.
Han, D., et al., 2022. A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization. Information Sciences , 597, p 318-340.
D. Han, et al., “A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization”, Information Sciences , vol. 597, 2022, pp. 318-340.
Han, D., Du, W., Jin, Y., Du, W., Yu, G.: A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization. Information Sciences . 597, 318-340 (2022).
Han, Dong, Du, Wenli, Jin, Yaochu, Du, Wei, and Yu, Guo. “A fuzzy constraint handling technique for decomposition-based constrained multi- and many-objective optimization”. Information Sciences 597 (2022): 318-340.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in