Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide

Weike N, Chanut E, Hoppe H, Eisfeld W (2022)
The Journal of Chemical Physics.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Weike, Nicole; Chanut, Emma; Hoppe, HannesUniBi ; Eisfeld, WolfgangUniBi
Abstract / Bemerkung
The theoretical treatment of the quantum dynamics of the phenyl iodide photodissociation requires an accurate analytical potential energy surface (PES) model. This model must also account for spin-orbit (SO) coupling. The present study is the first step to construct accurate SO coupled PESs, namely for the C-I dissociation coordinate. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) method developed over the past ten years. The SO-free Hamiltonian is represented in an asymptotic diabatic basis and then combined with an atomic effective relativistic coupling operator determined analytically. In contrast to the previously studied cases (HI, CH3I), the diabatic basis states are due to excitations in the phenyl fragment rather than the iodine atom. An accurate analytical model of the ab initio reference data is determined in two steps. The first step is a simple reference model describing the data qualitatively. This reference model is corrected through a trained artificial neural-network (ANN) to achieve high accuracy. The SO-free and the fine structure states resulting from this ERCAR model are discussed extensively in the context of the photodissociation.
Erscheinungsjahr
2022
Zeitschriftentitel
The Journal of Chemical Physics
ISSN
0021-9606
eISSN
1089-7690
Page URI
https://pub.uni-bielefeld.de/record/2963247

Zitieren

Weike N, Chanut E, Hoppe H, Eisfeld W. Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide. The Journal of Chemical Physics. 2022.
Weike, N., Chanut, E., Hoppe, H., & Eisfeld, W. (2022). Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide. The Journal of Chemical Physics. https://doi.org/10.1063/5.0088205
Weike, Nicole, Chanut, Emma, Hoppe, Hannes, and Eisfeld, Wolfgang. 2022. “Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide”. The Journal of Chemical Physics.
Weike, N., Chanut, E., Hoppe, H., and Eisfeld, W. (2022). Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide. The Journal of Chemical Physics.
Weike, N., et al., 2022. Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide. The Journal of Chemical Physics.
N. Weike, et al., “Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide”, The Journal of Chemical Physics, 2022.
Weike, N., Chanut, E., Hoppe, H., Eisfeld, W.: Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide. The Journal of Chemical Physics. (2022).
Weike, Nicole, Chanut, Emma, Hoppe, Hannes, and Eisfeld, Wolfgang. “Development of a Fully Coupled Diabatic Spin-Orbit Model for the Photodissociation of Phenyl Iodide”. The Journal of Chemical Physics (2022).

Link(s) zu Volltext(en)
Access Level
OA Open Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 35705416
PubMed | Europe PMC

Suchen in

Google Scholar