Nonlocal operators related to nonsymmetric forms II: Harnack inequalities

Kaßmann M, Weidner M (2022)
arXiv:2205.05531.

Preprint | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Local boundedness and Harnack inequalities are studied for solutions to parabolic and elliptic integro-differential equations whose governing nonlocal operators are associated with nonsymmetric forms. We present two independent proofs, one being based on the De Giorgi iteration and the other one on the Moser iteration technique. This article is a continuation of a recent work by the same authors, where H\"older regularity and a weak Harnack inequality are proved in a similar setup.
Erscheinungsjahr
2022
Zeitschriftentitel
arXiv:2205.05531
Page URI
https://pub.uni-bielefeld.de/record/2962913

Zitieren

Kaßmann M, Weidner M. Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531. 2022.
Kaßmann, M., & Weidner, M. (2022). Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531
Kaßmann, M., and Weidner, M. (2022). Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531.
Kaßmann, M., & Weidner, M., 2022. Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531.
M. Kaßmann and M. Weidner, “Nonlocal operators related to nonsymmetric forms II: Harnack inequalities”, arXiv:2205.05531, 2022.
Kaßmann, M., Weidner, M.: Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531. (2022).
Kaßmann, Moritz, and Weidner, Marvin. “Nonlocal operators related to nonsymmetric forms II: Harnack inequalities”. arXiv:2205.05531 (2022).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2205.05531

Suchen in

Google Scholar