Nonlocal operators related to nonsymmetric forms II: Harnack inequalities
Kaßmann M, Weidner M (2022)
arXiv:2205.05531.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Local boundedness and Harnack inequalities are studied for solutions to
parabolic and elliptic integro-differential equations whose governing nonlocal
operators are associated with nonsymmetric forms. We present two independent
proofs, one being based on the De Giorgi iteration and the other one on the
Moser iteration technique. This article is a continuation of a recent work by
the same authors, where H\"older regularity and a weak Harnack inequality are
proved in a similar setup.
Erscheinungsjahr
2022
Zeitschriftentitel
arXiv:2205.05531
Page URI
https://pub.uni-bielefeld.de/record/2962913
Zitieren
Kaßmann M, Weidner M. Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531. 2022.
Kaßmann, M., & Weidner, M. (2022). Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531
Kaßmann, Moritz, and Weidner, Marvin. 2022. “Nonlocal operators related to nonsymmetric forms II: Harnack inequalities”. arXiv:2205.05531.
Kaßmann, M., and Weidner, M. (2022). Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531.
Kaßmann, M., & Weidner, M., 2022. Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531.
M. Kaßmann and M. Weidner, “Nonlocal operators related to nonsymmetric forms II: Harnack inequalities”, arXiv:2205.05531, 2022.
Kaßmann, M., Weidner, M.: Nonlocal operators related to nonsymmetric forms II: Harnack inequalities. arXiv:2205.05531. (2022).
Kaßmann, Moritz, and Weidner, Marvin. “Nonlocal operators related to nonsymmetric forms II: Harnack inequalities”. arXiv:2205.05531 (2022).