Upper heat kernel estimates for nonlocal operators via Aronson's method
Kaßmann M, Weidner M (2021)
arXiv:2111.06744.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
In his celebrated article, Aronson established Gaussian bounds for the
fundamental solution to the Cauchy problem governed by a second order
divergence form operator with uniformly elliptic coefficients. We extend
Aronson's proof of upper heat kernel estimates to nonlocal operators whose
jumping kernel satisfies a pointwise upper bound and whose energy form is
coercive. A detailed proof is given in the Euclidean space and extensions to
doubling metric measure spaces are discussed.
Erscheinungsjahr
2021
Zeitschriftentitel
arXiv:2111.06744
Page URI
https://pub.uni-bielefeld.de/record/2962390
Zitieren
Kaßmann M, Weidner M. Upper heat kernel estimates for nonlocal operators via Aronson's method. arXiv:2111.06744. 2021.
Kaßmann, M., & Weidner, M. (2021). Upper heat kernel estimates for nonlocal operators via Aronson's method. arXiv:2111.06744
Kaßmann, M., and Weidner, M. (2021). Upper heat kernel estimates for nonlocal operators via Aronson's method. arXiv:2111.06744.
Kaßmann, M., & Weidner, M., 2021. Upper heat kernel estimates for nonlocal operators via Aronson's method. arXiv:2111.06744.
M. Kaßmann and M. Weidner, “Upper heat kernel estimates for nonlocal operators via Aronson's method”, arXiv:2111.06744, 2021.
Kaßmann, M., Weidner, M.: Upper heat kernel estimates for nonlocal operators via Aronson's method. arXiv:2111.06744. (2021).
Kaßmann, Moritz, and Weidner, Marvin. “Upper heat kernel estimates for nonlocal operators via Aronson's method”. arXiv:2111.06744 (2021).