Are Special Biserial Algebras Homologically Tame?
Ringel CM (2022)
Algebras and Representation Theory 26: 999–1005.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
s10468-022-10120-x (1).pdf
651.24 KB
Autor*in
Abstract / Bemerkung
Birge Huisgen-Zimmermann calls a finite dimensional algebra homologically tame provided the little and the big finitistic dimension are equal and finite. The question formulated in the title has been discussed by her in the paper "Representation-tame algebras need not be homologically tame", by looking for any r >= 1 at a sequence of algebras ?(m) with big finitistic dimension r + m. As we will show, also the little finitistic dimension of ?(m) is r + m. It follows that contrary to her assertion, all the algebras ?(m) are homologically tame.
Stichworte
Finitistic dimension;
Special biserial algebras
Erscheinungsjahr
2022
Zeitschriftentitel
Algebras and Representation Theory
Band
26
Seite(n)
999–1005
Urheberrecht / Lizenzen
ISSN
1386-923X
eISSN
1572-9079
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2962188
Zitieren
Ringel CM. Are Special Biserial Algebras Homologically Tame? Algebras and Representation Theory . 2022;26:999–1005.
Ringel, C. M. (2022). Are Special Biserial Algebras Homologically Tame? Algebras and Representation Theory , 26, 999–1005. https://doi.org/10.1007/s10468-022-10120-x
Ringel, Claus Michael. 2022. “Are Special Biserial Algebras Homologically Tame?”. Algebras and Representation Theory 26: 999–1005.
Ringel, C. M. (2022). Are Special Biserial Algebras Homologically Tame? Algebras and Representation Theory 26, 999–1005.
Ringel, C.M., 2022. Are Special Biserial Algebras Homologically Tame? Algebras and Representation Theory , 26, p 999–1005.
C.M. Ringel, “Are Special Biserial Algebras Homologically Tame?”, Algebras and Representation Theory , vol. 26, 2022, pp. 999–1005.
Ringel, C.M.: Are Special Biserial Algebras Homologically Tame? Algebras and Representation Theory . 26, 999–1005 (2022).
Ringel, Claus Michael. “Are Special Biserial Algebras Homologically Tame?”. Algebras and Representation Theory 26 (2022): 999–1005.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s10468-022-10120-x (1).pdf
651.24 KB
Access Level
Open Access
Zuletzt Hochgeladen
2023-12-12T14:47:18Z
MD5 Prüfsumme
6a3bcebb955c5bf1044edd0d3678bd2c
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in