Predictivity of early depressive symptoms for post-stroke depression

Lewin-Richter A, Volz M, Jöbges M, Werheid K (2015)
The journal of nutrition, health & aging 19(7): 754-758.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lewin-Richter, A.; Volz, M.; Jöbges, M.; Werheid, KatjaUniBi
Abstract / Bemerkung
Objectives: Depression is a frequent complication after stroke. However, little is known about the predictive value of early self-reported depressive symptoms (DS) for later development of post-stroke depression (PSD) 6 months after discharge. Design: Using a prospective longitudinal design, we investigated the prevalence of DS and examined their predictive value for depressive disorders 6 months after stroke while statistically controlling major established PSD risk factors. Setting and participants: During inpatient rehabilitation, 96 stroke patients were screened for DS. After 6 months, 71 patients were attainable for a follow-up. Measurements: DS was assessed using the 15-item Geriatric Depression Scale (GDS-15). At follow-up a telephone interview that included the Structured Clinical Interview for Psychiatric Disorders (SCID), which is based on DSM-IV criteria, and the GDS-15 was conducted. Patients with major depression (MD) at the follow-up were considered to have PSD. Results: Regression analyses were conducted to examine the influence of early DS on PSD after 6 months while controlling for age, premorbid depression, and functional and cognitive impairments. The percentage of patients who scored above the GDS-15 cut-off for clinically relevant DS increased significantly, from 37% to 44%, after 6 months. According to the SCID, 27% of stroke patients fulfilled the criteria for MD, and another 16% fulfilled those for minor depression. Logistic regression showed that DS at baseline significantly predicted PSD at follow-up (odds ratio: 1.43; 95% CI: 1.15-1.8). Conclusion: Self-reported DS during inpatient rehabilitation are predictive for PSD 6 months after discharge. Assessment of early DS contributes to identifying stroke patients at risk for PSD, thereby facilitating prevention and treatment.
Erscheinungsjahr
2015
Zeitschriftentitel
The journal of nutrition, health & aging
Band
19
Ausgabe
7
Seite(n)
754-758
ISSN
1279-7707
eISSN
1760-4788
Page URI
https://pub.uni-bielefeld.de/record/2962067

Zitieren

Lewin-Richter A, Volz M, Jöbges M, Werheid K. Predictivity of early depressive symptoms for post-stroke depression. The journal of nutrition, health & aging. 2015;19(7):754-758.
Lewin-Richter, A., Volz, M., Jöbges, M., & Werheid, K. (2015). Predictivity of early depressive symptoms for post-stroke depression. The journal of nutrition, health & aging, 19(7), 754-758. https://doi.org/10.1007/s12603-015-0540-x
Lewin-Richter, A., Volz, M., Jöbges, M., and Werheid, Katja. 2015. “Predictivity of early depressive symptoms for post-stroke depression”. The journal of nutrition, health & aging 19 (7): 754-758.
Lewin-Richter, A., Volz, M., Jöbges, M., and Werheid, K. (2015). Predictivity of early depressive symptoms for post-stroke depression. The journal of nutrition, health & aging 19, 754-758.
Lewin-Richter, A., et al., 2015. Predictivity of early depressive symptoms for post-stroke depression. The journal of nutrition, health & aging, 19(7), p 754-758.
A. Lewin-Richter, et al., “Predictivity of early depressive symptoms for post-stroke depression”, The journal of nutrition, health & aging, vol. 19, 2015, pp. 754-758.
Lewin-Richter, A., Volz, M., Jöbges, M., Werheid, K.: Predictivity of early depressive symptoms for post-stroke depression. The journal of nutrition, health & aging. 19, 754-758 (2015).
Lewin-Richter, A., Volz, M., Jöbges, M., and Werheid, Katja. “Predictivity of early depressive symptoms for post-stroke depression”. The journal of nutrition, health & aging 19.7 (2015): 754-758.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 26193859
PubMed | Europe PMC

Suchen in

Google Scholar