Improved Sobolev regularity for linear nonlocal equations with VMO coefficients
Nowak SN (2023)
Mathematische Annalen 385: 1323–1378.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
s00208-022-02369-w.pdf
775.95 KB
Autor*in
Einrichtung
Abstract / Bemerkung
This work is concerned with both higher integrability and differentiability for linear nonlocal equations with possibly very irregular coefficients of VMO-type or even coefficients that are merely small in BMO. In particular, such coefficients might be discontinuous. While for corresponding local elliptic equations with VMO coefficients such a gain of Sobolev regularity along the differentiability scale is unattainable, it was already observed in previous works that gaining differentiability in our nonlocal setting is possible under less restrictive assumptions than in the local setting. In this paper, we follow this direction and show that under assumptions on the right-hand side that allow for an arbitrarily small gain of integrability, weak solutions u is an element of W-s,W-2 in fact belong to W-loc(t, p) for any s <= t < min{2s, 1}, where p > 2 reflects the amount of integrability gained. In other words, our gain of differentiability does not depend on the amount of integrability we are able to gain. This extends numerous results in previous works, where either continuity of the coefficient was required or only an in general smaller gain of differentiability was proved.
Erscheinungsjahr
2023
Zeitschriftentitel
Mathematische Annalen
Band
385
Seite(n)
1323–1378
Urheberrecht / Lizenzen
ISSN
0025-5831
eISSN
1432-1807
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2961625
Zitieren
Nowak SN. Improved Sobolev regularity for linear nonlocal equations with VMO coefficients. Mathematische Annalen . 2023;385:1323–1378.
Nowak, S. N. (2023). Improved Sobolev regularity for linear nonlocal equations with VMO coefficients. Mathematische Annalen , 385, 1323–1378. https://doi.org/10.1007/s00208-022-02369-w
Nowak, Simon Noah. 2023. “Improved Sobolev regularity for linear nonlocal equations with VMO coefficients”. Mathematische Annalen 385: 1323–1378.
Nowak, S. N. (2023). Improved Sobolev regularity for linear nonlocal equations with VMO coefficients. Mathematische Annalen 385, 1323–1378.
Nowak, S.N., 2023. Improved Sobolev regularity for linear nonlocal equations with VMO coefficients. Mathematische Annalen , 385, p 1323–1378.
S.N. Nowak, “Improved Sobolev regularity for linear nonlocal equations with VMO coefficients”, Mathematische Annalen , vol. 385, 2023, pp. 1323–1378.
Nowak, S.N.: Improved Sobolev regularity for linear nonlocal equations with VMO coefficients. Mathematische Annalen . 385, 1323–1378 (2023).
Nowak, Simon Noah. “Improved Sobolev regularity for linear nonlocal equations with VMO coefficients”. Mathematische Annalen 385 (2023): 1323–1378.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
s00208-022-02369-w.pdf
775.95 KB
Access Level
Open Access
Zuletzt Hochgeladen
2023-12-05T15:26:26Z
MD5 Prüfsumme
240920aea6888fb7058b78ae4bc55f61
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in