A comparative study of neural machine translation models for Turkish language

Ozdemir O, Akin ES, Velioglu R, Dalyan T (2022)
Journal of Intelligent & Fuzzy Systems 42(3): 2103-2113.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Ozdemir, Ozgur; Akin, Emre Salih; Velioglu, RizaUniBi ; Dalyan, Tugba
Abstract / Bemerkung
Machine translation (MT) is an important challenge in the fields of Computational Linguistics. In this study, we conducted neural machine translation (NMT) experiments on two different architectures. First, Sequence to Sequence (Seq2Seq) architecture along with a variation that utilizes attention mechanism is performed on translation task. Second, an architecture that is fully based on the self-attention mechanism, namely Transformer, is employed to perform a comprehensive comparison. Besides, the contribution of employing Byte Pair Encoding (BPE) and Gumbel Softmax distributions are examined for both architectures. The experiments are conducted on two different datasets: TED Talks that is one of the popular benchmark datasets for NMT especially among morphologically rich languages like Turkish and WMT18 News dataset that is provided by The Third Conference on Machine Translation (WMT) for shared tasks on various aspects of machine translation. The evaluation of Turkish-to-English translations' results demonstrate that the Transformer model with combination of BPE and Gumbel Softmax achieved 22.4 BLEU score on TED Talks and 38.7 BLUE score on WMT18 News dataset. The empirical results support that using Gumbel Softmax distribution improves the quality of translations for both architectures.
Stichworte
Neural machine translation; Gumbel Softmax; sequence to sequence; transformer
Erscheinungsjahr
2022
Zeitschriftentitel
Journal of Intelligent & Fuzzy Systems
Band
42
Ausgabe
3
Seite(n)
2103-2113
ISSN
1064-1246
eISSN
1875-8967
Page URI
https://pub.uni-bielefeld.de/record/2961319

Zitieren

Ozdemir O, Akin ES, Velioglu R, Dalyan T. A comparative study of neural machine translation models for Turkish language. Journal of Intelligent & Fuzzy Systems . 2022;42(3):2103-2113.
Ozdemir, O., Akin, E. S., Velioglu, R., & Dalyan, T. (2022). A comparative study of neural machine translation models for Turkish language. Journal of Intelligent & Fuzzy Systems , 42(3), 2103-2113. https://doi.org/10.3233/JIFS-211453
Ozdemir, Ozgur, Akin, Emre Salih, Velioglu, Riza, and Dalyan, Tugba. 2022. “A comparative study of neural machine translation models for Turkish language”. Journal of Intelligent & Fuzzy Systems 42 (3): 2103-2113.
Ozdemir, O., Akin, E. S., Velioglu, R., and Dalyan, T. (2022). A comparative study of neural machine translation models for Turkish language. Journal of Intelligent & Fuzzy Systems 42, 2103-2113.
Ozdemir, O., et al., 2022. A comparative study of neural machine translation models for Turkish language. Journal of Intelligent & Fuzzy Systems , 42(3), p 2103-2113.
O. Ozdemir, et al., “A comparative study of neural machine translation models for Turkish language”, Journal of Intelligent & Fuzzy Systems , vol. 42, 2022, pp. 2103-2113.
Ozdemir, O., Akin, E.S., Velioglu, R., Dalyan, T.: A comparative study of neural machine translation models for Turkish language. Journal of Intelligent & Fuzzy Systems . 42, 2103-2113 (2022).
Ozdemir, Ozgur, Akin, Emre Salih, Velioglu, Riza, and Dalyan, Tugba. “A comparative study of neural machine translation models for Turkish language”. Journal of Intelligent & Fuzzy Systems 42.3 (2022): 2103-2113.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar