Aperiodic Order and Singular Spectra
Gohlke P (2022)
Bielefeld: Universität Bielefeld.
Bielefelder E-Dissertation | Englisch
Download
Thesis_Gohlke.pdf
1.30 MB
Autor*in
Gutachter*in / Betreuer*in
Baake, MichaelUniBi;
Damanik, David
Einrichtung
Abstract / Bemerkung
This work focuses on several models of aperiodic order and their applications in different areas of mathematics and mathematical physics. After a short introduction to the theory of dynamicals systems, we present random substitutions as a stochastic variant of substitutions which create symbolic dynamical systems that combine long-range order with a positive entropy. Using renormalization techniques, we obtain expressions for the entropy, diffraction, and ergodic measures of such systems. In the second part, we investigate spectral properties of Schrödinger operators that are associated with non-primitive substitution systems and dynamically defined product systems. Finally we perform a multifractal analysis of a particular spectral measure that has become known as the Thue--Morse measure.
Jahr
2022
Urheberrecht / Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2961175
Zitieren
Gohlke P. Aperiodic Order and Singular Spectra. Bielefeld: Universität Bielefeld; 2022.
Gohlke, P. (2022). Aperiodic Order and Singular Spectra. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2961175
Gohlke, Philipp. 2022. Aperiodic Order and Singular Spectra. Bielefeld: Universität Bielefeld.
Gohlke, P. (2022). Aperiodic Order and Singular Spectra. Bielefeld: Universität Bielefeld.
Gohlke, P., 2022. Aperiodic Order and Singular Spectra, Bielefeld: Universität Bielefeld.
P. Gohlke, Aperiodic Order and Singular Spectra, Bielefeld: Universität Bielefeld, 2022.
Gohlke, P.: Aperiodic Order and Singular Spectra. Universität Bielefeld, Bielefeld (2022).
Gohlke, Philipp. Aperiodic Order and Singular Spectra. Bielefeld: Universität Bielefeld, 2022.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Public Domain Dedication (CC0 1.0):
Volltext(e)
Name
Thesis_Gohlke.pdf
1.30 MB
Access Level
Open Access
Zuletzt Hochgeladen
2022-02-10T15:26:25Z
MD5 Prüfsumme
5588976e35979a5ca2e21d8260f580b8