Submodular mean field games: Existence and approximation of solutions

Dianetti J, Ferrari G, Fischer M, Nendel M (2021)
Annals of Applied Probability 31(6): 2538-2566.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We study mean field games with scalar Ito-type dynamics and costs that are submodular with respect to a suitable order relation on the state and measure space. The submodularity assumption has a number of interesting consequences. First, it allows us to prove existence of solutions via an application of Tarski's fixed point theorem, covering cases with discontinuous dependence on the measure variable. Second, it ensures that the set of solutions enjoys a lattice structure: in particular, there exist minimal and maximal solutions. Third, it guarantees that those two solutions can be obtained through a simple learning procedure based on the iterations of the best-response-map. The mean field game is first defined over ordinary stochastic controls, then extended to relaxed controls. Our approach also allows us to prove existence of a strong solution for a class of submodular mean field games with common noise, where the representative player at equilibrium interacts with the (conditional) mean of its state's distribution.
Stichworte
Mean field games; submodular cost function; complete lattice; first; order stochastic dominance; Tarski's fixed point theorem
Erscheinungsjahr
2021
Zeitschriftentitel
Annals of Applied Probability
Band
31
Ausgabe
6
Seite(n)
2538-2566
ISSN
1050-5164
Page URI
https://pub.uni-bielefeld.de/record/2960414

Zitieren

Dianetti J, Ferrari G, Fischer M, Nendel M. Submodular mean field games: Existence and approximation of solutions. Annals of Applied Probability. 2021;31(6):2538-2566.
Dianetti, J., Ferrari, G., Fischer, M., & Nendel, M. (2021). Submodular mean field games: Existence and approximation of solutions. Annals of Applied Probability, 31(6), 2538-2566. https://doi.org/10.1214/20-AAP1655
Dianetti, Jodi, Ferrari, Giorgio, Fischer, Markus, and Nendel, Max. 2021. “Submodular mean field games: Existence and approximation of solutions”. Annals of Applied Probability 31 (6): 2538-2566.
Dianetti, J., Ferrari, G., Fischer, M., and Nendel, M. (2021). Submodular mean field games: Existence and approximation of solutions. Annals of Applied Probability 31, 2538-2566.
Dianetti, J., et al., 2021. Submodular mean field games: Existence and approximation of solutions. Annals of Applied Probability, 31(6), p 2538-2566.
J. Dianetti, et al., “Submodular mean field games: Existence and approximation of solutions”, Annals of Applied Probability, vol. 31, 2021, pp. 2538-2566.
Dianetti, J., Ferrari, G., Fischer, M., Nendel, M.: Submodular mean field games: Existence and approximation of solutions. Annals of Applied Probability. 31, 2538-2566 (2021).
Dianetti, Jodi, Ferrari, Giorgio, Fischer, Markus, and Nendel, Max. “Submodular mean field games: Existence and approximation of solutions”. Annals of Applied Probability 31.6 (2021): 2538-2566.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar