Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism
Meydani E, Düsing C, Trier M (2021)
In: Proceedings of the 16th International Conference on Wirtschaftsinformatik.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Meydani, Elnaz;
Düsing, ChristophUniBi ;
Trier, Matthias
Einrichtung
Abstract / Bemerkung
Recommender Systems provide users with recommendations for
potential items of interest in applications like e-commerce and social media. User
information such as past item ratings and personal data can be considered as
inputs of these systems. In this study, we aim to utilize a trust-graph-based Neural
Network in the recommendation process. The proposed method tries to increase
the performance of graph-based RSs by considering the inferred level of trust and
its evolution. These recommendations will not only be based on the user
information itself but will be fueled by information about associates in the
network. To improve the system performance, we develop an attention
mechanism to infer a level of trust for each connection in the network. As users
are likely to be influenced more by those whom they trust the most, our method
might lead to more personalized recommendations, which is likely to increase
the user experience and satisfaction.
Erscheinungsjahr
2021
Titel des Konferenzbandes
Proceedings of the 16th International Conference on Wirtschaftsinformatik
Konferenz
16th International Conference on Wirtschaftsinformatik
Konferenzort
online
Konferenzdatum
2021-03-09 – 2021-03-11
Page URI
https://pub.uni-bielefeld.de/record/2960371
Zitieren
Meydani E, Düsing C, Trier M. Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. In: Proceedings of the 16th International Conference on Wirtschaftsinformatik. 2021.
Meydani, E., Düsing, C., & Trier, M. (2021). Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. Proceedings of the 16th International Conference on Wirtschaftsinformatik
Meydani, Elnaz, Düsing, Christoph, and Trier, Matthias. 2021. “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism”. In Proceedings of the 16th International Conference on Wirtschaftsinformatik.
Meydani, E., Düsing, C., and Trier, M. (2021). “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism” in Proceedings of the 16th International Conference on Wirtschaftsinformatik.
Meydani, E., Düsing, C., & Trier, M., 2021. Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. In Proceedings of the 16th International Conference on Wirtschaftsinformatik.
E. Meydani, C. Düsing, and M. Trier, “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism”, Proceedings of the 16th International Conference on Wirtschaftsinformatik, 2021.
Meydani, E., Düsing, C., Trier, M.: Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. Proceedings of the 16th International Conference on Wirtschaftsinformatik. (2021).
Meydani, Elnaz, Düsing, Christoph, and Trier, Matthias. “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism”. Proceedings of the 16th International Conference on Wirtschaftsinformatik. 2021.
Link(s) zu Volltext(en)
Access Level
Closed Access