Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism

Meydani E, Düsing C, Trier M (2021)
In: Proceedings of the 16th International Conference on Wirtschaftsinformatik.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Meydani, Elnaz; Düsing, ChristophUniBi ; Trier, Matthias
Abstract / Bemerkung
Recommender Systems provide users with recommendations for potential items of interest in applications like e-commerce and social media. User information such as past item ratings and personal data can be considered as inputs of these systems. In this study, we aim to utilize a trust-graph-based Neural Network in the recommendation process. The proposed method tries to increase the performance of graph-based RSs by considering the inferred level of trust and its evolution. These recommendations will not only be based on the user information itself but will be fueled by information about associates in the network. To improve the system performance, we develop an attention mechanism to infer a level of trust for each connection in the network. As users are likely to be influenced more by those whom they trust the most, our method might lead to more personalized recommendations, which is likely to increase the user experience and satisfaction.
Erscheinungsjahr
2021
Titel des Konferenzbandes
Proceedings of the 16th International Conference on Wirtschaftsinformatik
Konferenz
16th International Conference on Wirtschaftsinformatik
Konferenzort
online
Konferenzdatum
2021-03-09 – 2021-03-11
Page URI
https://pub.uni-bielefeld.de/record/2960371

Zitieren

Meydani E, Düsing C, Trier M. Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. In: Proceedings of the 16th International Conference on Wirtschaftsinformatik. 2021.
Meydani, E., Düsing, C., & Trier, M. (2021). Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. Proceedings of the 16th International Conference on Wirtschaftsinformatik
Meydani, Elnaz, Düsing, Christoph, and Trier, Matthias. 2021. “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism”. In Proceedings of the 16th International Conference on Wirtschaftsinformatik.
Meydani, E., Düsing, C., and Trier, M. (2021). “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism” in Proceedings of the 16th International Conference on Wirtschaftsinformatik.
Meydani, E., Düsing, C., & Trier, M., 2021. Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. In Proceedings of the 16th International Conference on Wirtschaftsinformatik.
E. Meydani, C. Düsing, and M. Trier, “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism”, Proceedings of the 16th International Conference on Wirtschaftsinformatik, 2021.
Meydani, E., Düsing, C., Trier, M.: Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism. Proceedings of the 16th International Conference on Wirtschaftsinformatik. (2021).
Meydani, Elnaz, Düsing, Christoph, and Trier, Matthias. “Towards a Trust-aware Item Recommendation System on a Graph Autoencoder with Attention Mechanism”. Proceedings of the 16th International Conference on Wirtschaftsinformatik. 2021.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar