Harnack inequality for nonlocal operators on manifolds with nonnegative curvature
Kim J, Ki M, Lee K-A (2022)
Calculus of Variations and Partial Differential Equations 61(1): 22.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kim, Jongmyeong;
Ki, MinhyunUniBi;
Lee, Ki-Ahm
Einrichtung
Abstract / Bemerkung
We establish the Krylov-Safonov Harnack inequalities and Holder estimates for fully nonlinear nonlocal operators of non-divergence form on Riemannian manifolds with nonnegative sectional curvatures. To this end, we first define the nonlocal Pucci operators on manifolds that give rise to the concept of non-divergence form operators. We then provide the uniform regularity estimates for these operators which recover the classical estimates for second order local operators as limits.
Stichworte
35B65;
35J60;
47G20;
58J05
Erscheinungsjahr
2022
Zeitschriftentitel
Calculus of Variations and Partial Differential Equations
Band
61
Ausgabe
1
Art.-Nr.
22
ISSN
0944-2669
eISSN
1432-0835
Page URI
https://pub.uni-bielefeld.de/record/2960204
Zitieren
Kim J, Ki M, Lee K-A. Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. Calculus of Variations and Partial Differential Equations. 2022;61(1): 22.
Kim, J., Ki, M., & Lee, K. - A. (2022). Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. Calculus of Variations and Partial Differential Equations, 61(1), 22. https://doi.org/10.1007/s00526-021-02124-0
Kim, Jongmyeong, Ki, Minhyun, and Lee, Ki-Ahm. 2022. “Harnack inequality for nonlocal operators on manifolds with nonnegative curvature”. Calculus of Variations and Partial Differential Equations 61 (1): 22.
Kim, J., Ki, M., and Lee, K. - A. (2022). Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. Calculus of Variations and Partial Differential Equations 61:22.
Kim, J., Ki, M., & Lee, K.-A., 2022. Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. Calculus of Variations and Partial Differential Equations, 61(1): 22.
J. Kim, M. Ki, and K.-A. Lee, “Harnack inequality for nonlocal operators on manifolds with nonnegative curvature”, Calculus of Variations and Partial Differential Equations, vol. 61, 2022, : 22.
Kim, J., Ki, M., Lee, K.-A.: Harnack inequality for nonlocal operators on manifolds with nonnegative curvature. Calculus of Variations and Partial Differential Equations. 61, : 22 (2022).
Kim, Jongmyeong, Ki, Minhyun, and Lee, Ki-Ahm. “Harnack inequality for nonlocal operators on manifolds with nonnegative curvature”. Calculus of Variations and Partial Differential Equations 61.1 (2022): 22.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in