Approximation of partial differential equations on compact resistance spaces
Hinz M, Meinert M (2022)
Calculus of Variations and Partial Differential Equations 61(1): 19.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Abstract / Bemerkung
We consider linear partial differential equations on resistance spaces that are uniformly elliptic and parabolic in the sense of quadratic forms and involve abstract gradient and divergence terms. Our main interest is to provide graph and metric graph approximations for their unique solutions. For families of equations with different coefficients on a single compact resistance space we prove that solutions have accumulation points with respect to the uniform convergence in space, provided that the coefficients remain bounded. If in a sequence of equations the coefficients converge suitably, the solutions converge uniformly along a subsequence. For the special case of local resistance forms on finitely ramified sets we also consider sequences of resistance spaces approximating the finitely ramified set from within. Under suitable assumptions on the coefficients (extensions of) linearizations of the solutions of equations on the approximating spaces accumulate or even converge uniformly along a subsequence to the solution of the target equation on the finitely ramified set. The results cover discrete and metric graph approximations, and both are discussed.
Erscheinungsjahr
2022
Zeitschriftentitel
Calculus of Variations and Partial Differential Equations
Band
61
Ausgabe
1
Art.-Nr.
19
Urheberrecht / Lizenzen
ISSN
0944-2669
eISSN
1432-0835
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2960183
Zitieren
Hinz M, Meinert M. Approximation of partial differential equations on compact resistance spaces. Calculus of Variations and Partial Differential Equations . 2022;61(1): 19.
Hinz, M., & Meinert, M. (2022). Approximation of partial differential equations on compact resistance spaces. Calculus of Variations and Partial Differential Equations , 61(1), 19. https://doi.org/10.1007/s00526-021-02119-x
Hinz, Michael, and Meinert, Melissa. 2022. “Approximation of partial differential equations on compact resistance spaces”. Calculus of Variations and Partial Differential Equations 61 (1): 19.
Hinz, M., and Meinert, M. (2022). Approximation of partial differential equations on compact resistance spaces. Calculus of Variations and Partial Differential Equations 61:19.
Hinz, M., & Meinert, M., 2022. Approximation of partial differential equations on compact resistance spaces. Calculus of Variations and Partial Differential Equations , 61(1): 19.
M. Hinz and M. Meinert, “Approximation of partial differential equations on compact resistance spaces”, Calculus of Variations and Partial Differential Equations , vol. 61, 2022, : 19.
Hinz, M., Meinert, M.: Approximation of partial differential equations on compact resistance spaces. Calculus of Variations and Partial Differential Equations . 61, : 19 (2022).
Hinz, Michael, and Meinert, Melissa. “Approximation of partial differential equations on compact resistance spaces”. Calculus of Variations and Partial Differential Equations 61.1 (2022): 19.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2022-07-21T07:00:24Z
MD5 Prüfsumme
b0b49297a97fce25c624c5403e7fca45
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in