Simulation-based comparison of multivariate ensemble post-processing methods

Lerch S, Baran S, Möller AC, Groß J, Schefzik R, Hemri S, Graeter M (2020)
Nonlinear Processes in Geophysics 27(2): 349-371.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.30 MB
Autor*in
Lerch, Sebastian; Baran, Sándor; Möller, Annette ChristineUniBi ; Groß, Jürgen; Schefzik, Roman; Hemri, Stephan; Graeter, Maximiliane
Abstract / Bemerkung
Many practical applications of statistical post-processing methods for ensemble weather forecasts require accurate modeling of spatial, temporal, and inter-variable dependencies. Over the past years, a variety of approaches has been proposed to address this need. We provide a comprehensive review and comparison of state-of-the-art methods for multivariate ensemble post-processing. We focus on generally applicable two-step approaches where ensemble predictions are first post-processed separately in each margin and multivariate dependencies are restored via copula functions in a second step. The comparisons are based on simulation studies tailored to mimic challenges occurring in practical applications and allow ready interpretation of the effects of different types of misspecifications in the mean, variance, and covariance structure of the ensemble forecasts on the performance of the post-processing methods. Overall, we find that the Schaake shuffle provides a compelling benchmark that is difficult to outperform, whereas the forecast quality of parametric copula approaches and variants of ensemble copula coupling strongly depend on the misspecifications at hand.
Erscheinungsjahr
2020
Zeitschriftentitel
Nonlinear Processes in Geophysics
Band
27
Ausgabe
2
Seite(n)
349-371
eISSN
1607-7946
Page URI
https://pub.uni-bielefeld.de/record/2959842

Zitieren

Lerch S, Baran S, Möller AC, et al. Simulation-based comparison of multivariate ensemble post-processing methods. Nonlinear Processes in Geophysics. 2020;27(2):349-371.
Lerch, S., Baran, S., Möller, A. C., Groß, J., Schefzik, R., Hemri, S., & Graeter, M. (2020). Simulation-based comparison of multivariate ensemble post-processing methods. Nonlinear Processes in Geophysics, 27(2), 349-371. https://doi.org/10.5194/npg-27-349-2020
Lerch, Sebastian, Baran, Sándor, Möller, Annette Christine, Groß, Jürgen, Schefzik, Roman, Hemri, Stephan, and Graeter, Maximiliane. 2020. “Simulation-based comparison of multivariate ensemble post-processing methods”. Nonlinear Processes in Geophysics 27 (2): 349-371.
Lerch, S., Baran, S., Möller, A. C., Groß, J., Schefzik, R., Hemri, S., and Graeter, M. (2020). Simulation-based comparison of multivariate ensemble post-processing methods. Nonlinear Processes in Geophysics 27, 349-371.
Lerch, S., et al., 2020. Simulation-based comparison of multivariate ensemble post-processing methods. Nonlinear Processes in Geophysics, 27(2), p 349-371.
S. Lerch, et al., “Simulation-based comparison of multivariate ensemble post-processing methods”, Nonlinear Processes in Geophysics, vol. 27, 2020, pp. 349-371.
Lerch, S., Baran, S., Möller, A.C., Groß, J., Schefzik, R., Hemri, S., Graeter, M.: Simulation-based comparison of multivariate ensemble post-processing methods. Nonlinear Processes in Geophysics. 27, 349-371 (2020).
Lerch, Sebastian, Baran, Sándor, Möller, Annette Christine, Groß, Jürgen, Schefzik, Roman, Hemri, Stephan, and Graeter, Maximiliane. “Simulation-based comparison of multivariate ensemble post-processing methods”. Nonlinear Processes in Geophysics 27.2 (2020): 349-371.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2021-12-10T10:43:28Z
MD5 Prüfsumme
219079d0d651a211d77227874f7d1c9e


Link(s) zu Volltext(en)
Access Level
OA Open Access

Material in PUB:
Zitiert
Supplementary material to "Simulation-based comparison of multivariate ensemble post-processing methods"
Lerch S, Baran S, Möller AC, Groß J, Schefzik R, Hemri S, Graeter M (2020)
Copernicus GmbH.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

Preprint: 10.5194/npg-2019-62

Suchen in

Google Scholar