Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease

Langnickel L, Krockauer K, Uebachs M, Schaaf S, Madan S, Klockgether T, Fluck J (2021)
Applied Sciences 11(22): 10717.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 891.75 KB
Autor*in
Langnickel, LisaUniBi ; Krockauer, Kilian; Uebachs, Mischa; Schaaf, Sebastian; Madan, Sumit; Klockgether, Thomas; Fluck, Juliane
Abstract / Bemerkung
Dementia affects approximately 50 million people in the world today, the majority suffering from Alzheimer's disease (AD). The availability of long-term patient data is one of the most important prerequisites for a better understanding of diseases. Worldwide, many prospective, longitudinal cohort studies have been initiated to understand AD. However, this approach takes years to enroll and follow up with a substantial number of patients, resulting in a current lack of data. This raises the question of whether clinical routine datasets could be utilized to extend collected registry data. It is, therefore, necessary to assess what kind of information is available in memory clinic routine databases. We did exactly this based on the example of the University Hospital Bonn. Whereas a number of data items are available in machine readable formats, additional valuable information is stored in textual documents. The extraction of information from such documents is only applicable via text mining methods. Therefore, we set up modular, rule-based text mining workflows requiring minimal sets of training data. The system achieves F1-scores over 95% for the most relevant classes, i.e., memory disturbances from medical reports and quantitative scores from semi-structured neuropsychological test protocols. Thus, we created a machine-readable core dataset for over 8000 patient visits over a ten-year period.
Stichworte
clinical text mining; data standardization; semantic interoperability
Erscheinungsjahr
2021
Zeitschriftentitel
Applied Sciences
Band
11
Ausgabe
22
Art.-Nr.
10717
eISSN
2076-3417
Page URI
https://pub.uni-bielefeld.de/record/2959764

Zitieren

Langnickel L, Krockauer K, Uebachs M, et al. Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease. Applied Sciences. 2021;11(22): 10717.
Langnickel, L., Krockauer, K., Uebachs, M., Schaaf, S., Madan, S., Klockgether, T., & Fluck, J. (2021). Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease. Applied Sciences, 11(22), 10717. https://doi.org/10.3390/app112210717
Langnickel, Lisa, Krockauer, Kilian, Uebachs, Mischa, Schaaf, Sebastian, Madan, Sumit, Klockgether, Thomas, and Fluck, Juliane. 2021. “Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease”. Applied Sciences 11 (22): 10717.
Langnickel, L., Krockauer, K., Uebachs, M., Schaaf, S., Madan, S., Klockgether, T., and Fluck, J. (2021). Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease. Applied Sciences 11:10717.
Langnickel, L., et al., 2021. Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease. Applied Sciences, 11(22): 10717.
L. Langnickel, et al., “Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease”, Applied Sciences, vol. 11, 2021, : 10717.
Langnickel, L., Krockauer, K., Uebachs, M., Schaaf, S., Madan, S., Klockgether, T., Fluck, J.: Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease. Applied Sciences. 11, : 10717 (2021).
Langnickel, Lisa, Krockauer, Kilian, Uebachs, Mischa, Schaaf, Sebastian, Madan, Sumit, Klockgether, Thomas, and Fluck, Juliane. “Information Extraction from German Clinical Care Documents in Context of Alzheimer's Disease”. Applied Sciences 11.22 (2021): 10717.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2021-12-14T13:49:54Z
MD5 Prüfsumme
08040fb7a8c505ca63916691a478a915

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar