Stirling operators in spatial combinatorics

Finkelshtein D, Kondratiev Y, Lytvynov E, Oliveira MJ (2022)
Journal of Functional Analysis 282(2): 109285.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Finkelshtein, Dmitri; Kondratiev, YuriUniBi; Lytvynov, Eugene; Oliveira, Maria Joao
Abstract / Bemerkung
We define and study a spatial (infinite-dimensional) counterpart of Stirling numbers. In classical combinatorics, the Pochhammer symbol (m)(n) can be extended from a natural number m epsilon N to the falling factorials (z)(n)= z(z - 1) . . . (z - n + 1) of an argument zfrom F = RorC, and Stirling numbers of the first and second kinds are the coefficients of the expansions of (z)(n) through z(k), k <= n and vice versa. When taking into account spatial positions of elements in a locally compact Polish space X, we replace Nby the space of configurations-discrete Radon measures gamma= Sigma(i) delta(xi) on X, where delta(xi) is the Dirac measure with mass at x(i). The spatial falling factorials (gamma)(n):= Sigma (i1) Sigma(i2 not equal i1) . .. , Sigma(in not equal i1),...,(delta)(in not equal in-1)(x(i1),x(i2),...,x(in)) can be naturally extended to mappings M-(1)(X) (SIC) omega -> (omega)(n) epsilon M-(n)(X), where M-(n)(X) denotes the space of F-valued, symmetric (for n >= 2) Radon measures on X-n. There is a natural duality between M-(n)(X) and the space CF(n)(X) of F-valued, symmetric continuous functions on Xnwith compact support. The Stirling operators of the first and second kind, s(n, k) and S(n, k), are linear operators, acting between spaces CF(n)(X) and CF(k)(X) such that their dual operators, acting from M-(k)(X) into M-(n)(X), satisfy (omega)(n)= Sigma(k=1s)(n)(n, k)(*)omega(circle times k) and omega(circle times n) = Sigma S-k= 1(n)( n, k)(*)(omega)(k), respectively. In the case where Xhas only a single point, the Stirling operators can be identified with Stirling numbers. We derive combinatorial properties of the Stirling operators, present their connections with a generalization of the Poisson point process and with the Wick ordering under the canonical commutation relations. (C) 2021 Elsevier Inc. All rights reserved.
Stichworte
Spatial falling factorials; Stirling operators; Poisson functional; Wick; ordering for canonical; commutation relations
Erscheinungsjahr
2022
Zeitschriftentitel
Journal of Functional Analysis
Band
282
Ausgabe
2
Art.-Nr.
109285
ISSN
0022-1236
eISSN
1096-0783
Page URI
https://pub.uni-bielefeld.de/record/2958911

Zitieren

Finkelshtein D, Kondratiev Y, Lytvynov E, Oliveira MJ. Stirling operators in spatial combinatorics. Journal of Functional Analysis. 2022;282(2): 109285.
Finkelshtein, D., Kondratiev, Y., Lytvynov, E., & Oliveira, M. J. (2022). Stirling operators in spatial combinatorics. Journal of Functional Analysis, 282(2), 109285. https://doi.org/10.1016/j.jfa.2021.109285
Finkelshtein, D., Kondratiev, Y., Lytvynov, E., and Oliveira, M. J. (2022). Stirling operators in spatial combinatorics. Journal of Functional Analysis 282:109285.
Finkelshtein, D., et al., 2022. Stirling operators in spatial combinatorics. Journal of Functional Analysis, 282(2): 109285.
D. Finkelshtein, et al., “Stirling operators in spatial combinatorics”, Journal of Functional Analysis, vol. 282, 2022, : 109285.
Finkelshtein, D., Kondratiev, Y., Lytvynov, E., Oliveira, M.J.: Stirling operators in spatial combinatorics. Journal of Functional Analysis. 282, : 109285 (2022).
Finkelshtein, Dmitri, Kondratiev, Yuri, Lytvynov, Eugene, and Oliveira, Maria Joao. “Stirling operators in spatial combinatorics”. Journal of Functional Analysis 282.2 (2022): 109285.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar