Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O

Yang T, Zhao B, Chen GK, Guo H, Campbell WC, Hudson ER (2021)
New Journal of Physics 23(11): 115004.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Yang, Tiangang; Zhao, BinUniBi; Chen, Gary K.; Guo, Hua; Campbell, Wesley C.; Hudson, Eric R.
Abstract / Bemerkung
Trapped Be+ ions are a leading platform for quantum information science (Gaebler et al 2016 Phys. Rev. Lett. ), but reactions with background gas species, such as H-2 and H2O, result in qubit loss. Our experiment reveals that the BeOH+ ion is the final trapped ion species when both H-2 and H2O exist in a vacuum system with cold, trapped Be+. The BeH+ product in the Be+ + H-2 reaction further reacts with H2O to form BeOH+. To understand the loss mechanism, low-temperature reactions between sympathetically cooled BeD+ ions and H2O molecules have been investigated using an integrated, laser-cooled Be+ ion trap and high-resolution time-of-flight mass spectrometer (Schneider et al 2014 Phys. Rev. Appl. ). Among all the possible products, BeH2O+, H2DO+, BeOD+, and BeOH+, only the BeOH+ molecular ion was observed experimentally, with the assumed co-product of HD. Theoretical analyses based on explicitly correlated restricted coupled cluster singles, doubles, and perturbative triples (RCCSD(T)-F12) method with the augmented correlation-consistent polarized triple zeta (AVTZ) basis set reveal that two intuitive direct abstraction product channels, Be + H2DO+ and D + BeH2O+, are not energetically accessible at the present reaction temperature (similar to 150 K). Instead, a double displacement BeOH+ + HD product channel is accessible due to a large exothermicity of 1.885 eV through a submerged barrier in the reaction pathway. While the BeOD+ + H-2 product channel has a similar exothermicity, the reaction pathway is dynamically unfavourable, as suggested by a sudden vector projection analysis. This work sheds light on the origin of the loss and contaminations of the laser-cooled Be+ ions in quantum-information experiments.
Stichworte
trapped ions; quantum information; cold reactions
Erscheinungsjahr
2021
Zeitschriftentitel
New Journal of Physics
Band
23
Ausgabe
11
Art.-Nr.
115004
eISSN
1367-2630
Page URI
https://pub.uni-bielefeld.de/record/2958910

Zitieren

Yang T, Zhao B, Chen GK, Guo H, Campbell WC, Hudson ER. Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O. New Journal of Physics . 2021;23(11): 115004.
Yang, T., Zhao, B., Chen, G. K., Guo, H., Campbell, W. C., & Hudson, E. R. (2021). Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O. New Journal of Physics , 23(11), 115004. https://doi.org/10.1088/1367-2630/ac2ae3
Yang, T., Zhao, B., Chen, G. K., Guo, H., Campbell, W. C., and Hudson, E. R. (2021). Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O. New Journal of Physics 23:115004.
Yang, T., et al., 2021. Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O. New Journal of Physics , 23(11): 115004.
T. Yang, et al., “Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O”, New Journal of Physics , vol. 23, 2021, : 115004.
Yang, T., Zhao, B., Chen, G.K., Guo, H., Campbell, W.C., Hudson, E.R.: Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O. New Journal of Physics . 23, : 115004 (2021).
Yang, Tiangang, Zhao, Bin, Chen, Gary K., Guo, Hua, Campbell, Wesley C., and Hudson, Eric R. “Determining reaction pathways at low temperatures by isotopic substitution: the case of BeD (+) + H2O”. New Journal of Physics 23.11 (2021): 115004.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar