Detecting pulsars with neural networks: a proof of concept
Künkel L, Thomas RM, Verbiest J (2021)
Monthly Notices of the Royal Astronomical Society 506(1): 1111-1127.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
Pulsar searches are computationally demanding efforts to discover dispersed periodic signals in time- and frequency-resolved data from radio telescopes. The complexity and computational expense of simultaneously determining the frequency-dependent delay (dispersion) and the periodicity of the signal is further exacerbated by the presence of various types of radio-frequency interference (RFI) and observing-system effects. New observing systems with wider bandwidths, higher bit rates, and greater overall sensitivity (also to RFI) further enhance these challenges. We present a novel approach to the analysis of pulsar search data. Specifically, we present a neural-network-based pipeline that efficiently suppresses a wide range of RFI signals and instrumental instabilities and furthermore corrects for (a priori unknown) interstellar dispersion. After initial training of the network, our analysis can be run in real time on a standard desktop computer with a commonly available, consumer-grade graphics processing unit (GPU). We complement our neural network with standard algorithms for periodicity searches. In particular with the Fast Fourier Transform and the Fast Folding Algorithm and demonstrate that with these straightforward extensions, our method is capable of identifying even faint pulsars while maintaining an extremely low number of false positives. We furthermore apply our analysis to a subset of the PALFA survey and demonstrate that in most cases the automated dispersion removal of our network produces a time series of similar quality as dedispersing, using the actual dispersion measure of the pulsar in question. On our test data, we are able to make predictions whether a pulsar is present in the data or not 200 times faster than real time.
Stichworte
methods: data analysis;
pulsars: general
Erscheinungsjahr
2021
Zeitschriftentitel
Monthly Notices of the Royal Astronomical Society
Band
506
Ausgabe
1
Seite(n)
1111-1127
ISSN
0035-8711
eISSN
1365-2966
Page URI
https://pub.uni-bielefeld.de/record/2958498
Zitieren
Künkel L, Thomas RM, Verbiest J. Detecting pulsars with neural networks: a proof of concept. Monthly Notices of the Royal Astronomical Society . 2021;506(1):1111-1127.
Künkel, L., Thomas, R. M., & Verbiest, J. (2021). Detecting pulsars with neural networks: a proof of concept. Monthly Notices of the Royal Astronomical Society , 506(1), 1111-1127. https://doi.org/10.1093/mnras/stab1628
Künkel, Lars, Thomas, Rajat M., and Verbiest, Joris. 2021. “Detecting pulsars with neural networks: a proof of concept”. Monthly Notices of the Royal Astronomical Society 506 (1): 1111-1127.
Künkel, L., Thomas, R. M., and Verbiest, J. (2021). Detecting pulsars with neural networks: a proof of concept. Monthly Notices of the Royal Astronomical Society 506, 1111-1127.
Künkel, L., Thomas, R.M., & Verbiest, J., 2021. Detecting pulsars with neural networks: a proof of concept. Monthly Notices of the Royal Astronomical Society , 506(1), p 1111-1127.
L. Künkel, R.M. Thomas, and J. Verbiest, “Detecting pulsars with neural networks: a proof of concept”, Monthly Notices of the Royal Astronomical Society , vol. 506, 2021, pp. 1111-1127.
Künkel, L., Thomas, R.M., Verbiest, J.: Detecting pulsars with neural networks: a proof of concept. Monthly Notices of the Royal Astronomical Society . 506, 1111-1127 (2021).
Künkel, Lars, Thomas, Rajat M., and Verbiest, Joris. “Detecting pulsars with neural networks: a proof of concept”. Monthly Notices of the Royal Astronomical Society 506.1 (2021): 1111-1127.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in