ASlib: A benchmark library for algorithm selection

Bischl B, Kerschke P, Kotthoff L, Lindauer M, Malitsky Y, Fréchette A, Hoos H, Hutter F, Leyton-Brown K, Tierney K, Vanschoren J (2016)
Artificial Intelligence 237: 41-58.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Bischl, Bernd; Kerschke, Pascal; Kotthoff, Lars; Lindauer, Marius; Malitsky, Yuri; Fréchette, Alexandre; Hoos, Holger; Hutter, Frank; Leyton-Brown, Kevin; Tierney, KevinUniBi ; Vanschoren, Joaquin
Abstract / Bemerkung
The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. To demonstrate the breadth and power of our platform, we describe a study that builds and evaluates algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.
Erscheinungsjahr
2016
Zeitschriftentitel
Artificial Intelligence
Band
237
Seite(n)
41-58
ISSN
0004-3702
Page URI
https://pub.uni-bielefeld.de/record/2958238

Zitieren

Bischl B, Kerschke P, Kotthoff L, et al. ASlib: A benchmark library for algorithm selection. Artificial Intelligence. 2016;237:41-58.
Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos, H., et al. (2016). ASlib: A benchmark library for algorithm selection. Artificial Intelligence, 237, 41-58. https://doi.org/10.1016/j.artint.2016.04.003
Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., et al. (2016). ASlib: A benchmark library for algorithm selection. Artificial Intelligence 237, 41-58.
Bischl, B., et al., 2016. ASlib: A benchmark library for algorithm selection. Artificial Intelligence, 237, p 41-58.
B. Bischl, et al., “ASlib: A benchmark library for algorithm selection”, Artificial Intelligence, vol. 237, 2016, pp. 41-58.
Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., Vanschoren, J.: ASlib: A benchmark library for algorithm selection. Artificial Intelligence. 237, 41-58 (2016).
Bischl, Bernd, Kerschke, Pascal, Kotthoff, Lars, Lindauer, Marius, Malitsky, Yuri, Fréchette, Alexandre, Hoos, Holger, Hutter, Frank, Leyton-Brown, Kevin, Tierney, Kevin, and Vanschoren, Joaquin. “ASlib: A benchmark library for algorithm selection”. Artificial Intelligence 237 (2016): 41-58.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar